436. Find Right Interval

Given a set of intervals, for each of the interval i, check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i.

For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array.

Note:

  1. You may assume the interval's end point is always bigger than its start point.
  2. You may assume none of these intervals have the same start point.

Example 1:

Input: [ [1,2] ]

Output: [-1]

Explanation: There is only one interval in the collection, so it outputs -1.

Example 2:

Input: [ [3,4], [2,3], [1,2] ]

Output: [-1, 0, 1]

Explanation: There is no satisfied "right" interval for [3,4].
For [2,3], the interval [3,4] has minimum-"right" start point;
For [1,2], the interval [2,3] has minimum-"right" start point.

Example 3:

Input: [ [1,4], [2,3], [3,4] ]

Output: [-1, 2, -1]

Explanation: There is no satisfied "right" interval for [1,4] and [3,4].

For [2,3], the interval [3,4] has minimum-"right" start point.

原题如上所示:

1.咋一看,肯定会有很多人想到用最笨的方法,也就是全部遍历直到找到那个大于等于它的end的最小start,但是这种情况显示超时。确实,时间复杂度为O(n^2),代码如下:

public class Solution {     public int[] findRightInterval(Interval[] intervals) {          int length=intervals.length;         int[] ret=new int [length];         for(int i=0;i<length;i++){         int interval=Integer.MAX_VALUE;         int flag=-1;         for(int j=0;j<length;j++)         if(intervals[j].start>=intervals[i].end&&interval>=intervals[j].start-intervals[i].end){         interval=intervals[j].start-intervals[i].end;         flag=j;         }                 ret[i]=flag;         }         return ret;     } }

提交的结果是超时。

2.第二种思想就要考虑利用集合类了,时间复杂度为O(NlgN)回想到TreeMap中自带有两个函数higherEntry(key)和ceilingEntry(key);这两个函数的作用是:higherEntry(key)返回大于键的最小键,如果不存在则返回null

ceilingEntry(key)返回大于或等于键的最小键,如果不存在则返回null。所以完美的解决了这个问题,算法分为以下两步骤:

1)建立一个TreeMap,用来保存起始点和位置。

2)遍历intervals,调用treemap的两个函数,找到相应的键值对。

具体函数代码如下:

public class Solution {     public int[] findRightInterval(Interval[] intervals) {         int length=intervals.length; int []ret =new int[length];

//第一步骤,定义键值对 TreeMap<Integer,Integer> tMap=new TreeMap<Integer,Integer>(); for(int i=0;i<length;i++){ tMap.put(intervals[i].start, i); }

//第二步骤,调用函数来找到目标键值对 for(int i=0;i<length;i++){ Map.Entry<Integer, Integer> entry=tMap.ceilingEntry(intervals[i].end);

//Map.Entry<Integer, Integer> entry=tMap.higherEntry(intervals[i].end-1); if(entry!=null) ret[i]=entry.getValue(); else ret[i]=-1; } return ret;     } }

考虑到最近遇到了不少TreeMap,HashMap以及相关的HashTable的问题,下一篇博客决定来比较下这几种集合类的区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值