数据的标准化和归一化

前面我们已经学习了识别数据缺失值已经对缺失值进行处理的方法,但是KNN的准确率都不是很高,今天我们继续进行数据探索进一步增强机器学习流水线;

通过数据直方图可以看到数据中的列的均值、最大值、最小值等差别很大;

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy='mean')
pima_imputed = imputer.fit_transform(pima)
pima_imputed = pd.DataFrame(pima_imputed, columns=pima_column_names)
pima_imputed.hist(figsize=(15, 15))
plt.show()

通过describe方法,从数值上可以看到这个差别;diastolic_blood_pressure列的舒张压在24~122,年龄是21~81;

print(pima_imputed.describe())
#        times_pregnant  plasma_glucose_concentration  diastolic_blood_pressure  triceps_thickness  serum_insulin         bmi  pedigree_function         age  onset_diabetes
# count      768.000000                    768.000000                768.000000         768.000000     768.000000  768.000000         768.000000  768.000000      768.000000
# mean         3.845052                    121.686763                 72.405184          29.153420     155.548223   32.457464           0.471876   33.240885        0.348958
# std          3.369578                     30.435949                 12.096346           8.790942      85.021108    6.875151           0.331329   11.760232        0.476951
# min          0.000000                     44.000000                 24.000000           7.000000      14.000000   18.200000           0.078000   21.000000        0.000000
# 25%          1.000000                     99.750000                 64.000000          25.000000     121.500000   27.500000           0.243750   24.000000        0.000000
# 50%          3.000000                    117.000000                 72.202592          29.153420     155.548223   32.400000           0.372500   29.000000        0.000000
# 75%          6.000000                    140.250000                 80.000000          32.000000     155.548223   36.600000           0.626250   41.000000        1.000000
# max         17.000000                    199.000000                122.000000          99.000000     846.000000   67.100000           2.420000   81.000000        1.000000

在直方图中,让所有的列共享数据轴,可以看到所有的数据尺寸都是不一样的,有一些列已经无法显示图形了;

pima_imputed.hist(figsize=(15, 15), sharey=True, sharex=True)
plt.show()

对于上面的问题,我们可以选用某种归一化操作,在机器学习流水线上处理该问题;归一化操作旨在将行和列对齐并转化为一致的规则;标准化通过确保所有行和列在机器学习中得到平等对待,让数据的处理保持一致。
下边我们将尝试3种数据归一化方法:
❏ z分数标准化;
❏ min-max标准化;
❏ 行归一化。

Z分数标准化

z分数标准化是最常见的标准化技术,利用了统计学里简单的z分数(标准分数)思想。z分数标准化的输出会被重新缩放,使均值为0、标准差为1。通过缩放特征、统一化均值和方差(标准差的平方),可以让KNN这种模型达到最优化,而不会倾向于较大比例的特征。公式很简单,对于每列,用这个公式替换单元格:

z= (x- μ) / σ

我们利用刚才的公式计算plasma_glucose_concentration的z分数;

pgc_std = pima_imputed['plasma_glucose_concentration'].std()
pgc_mean = pima_imputed['plasma_glucose_concentration'].mean()
pgc_z = (pima_imputed['plasma_glucose_concentration']-pgc_mean)/pgc_std
print(pgc_z.head())
# 0    0.864545
# 1   -1.205376
# 2    2.014501
# 3   -1.073952
# 4    0.503130
# Name: plasma_glucose_concentration, dtype: float64

通过直方图可以看到plasma_glucose_concentration处理之前的横轴分布在40到200之间;

pgc_field_name = 'plasma_glucose_concentration'
ax = pima_imputed[pgc_field_name].hist()
ax.set_title('Distribution of pgc')
plt.show()

sklearn提供了StandardScaler来计算z分数;

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
pgc_z_standardized = scaler.fit_transform(pima_imputed[[pgc_field_name]])
print(pgc_z_standardized.mean())
print(pgc_z_standardized.std())
# -3.561965537339044e-16
# 1.0

从处理后的直方图可以看到横轴的分布范围在-2.6到2.6之间,数据分布变密了;

ax = pd.Series(pgc_z_standardized.reshape(-1,)).hist()
ax.set_title('Distribution of pgc after Z Score Scaling')
plt.show()

现在我们对数据集的所有字段都进行z分数计算,然后通过直方图可以看到,横轴的数值分布在-2.5到7.5之间;

scaler = StandardScaler()
pima_imputed_z = pd.DataFrame(scaler.fit_transform(pima_imputed), columns=pima_column_names)
pima_imputed_z.hist(figsize=(15, 15), sharex=True)
plt.show()

我们将StandardScaler插入之前的机器学习流水线中;

onset_field_name = 'onset_diabetes'
knn_params = {'imputer__strategy':['mean', 'median'], 'classify__n_neighbors':[1, 2, 3, 4, 5, 6, 7]}
knn = KNeighborsClassifier()
pipe_z = Pipeline([('imputer', SimpleImputer()), ('standardize', StandardScaler()), ('classify', knn)])
X = pima.drop(onset_field_name, axis=1)
y = pima[onset_field_name]
grid = GridSearchCV(pipe_z, knn_params)
grid.fit(X, y)
print(grid.best_score_, grid.best_params_)

# 0.7539173245055598 {'classify__n_neighbors': 7, 'imputer__strategy': 'mean'}

min-max标准化

min-max标准化和z分数标准化类似,因为它也用一个公式替换列中的每个值。此处的公式是:

m=(X-Xmin)/(Xmax-Xmin)

我们使用sklearn内置的MinMaxScaler进行处理,可以看到处理之后最小值都变成了0,最大值都变成了1,这种缩放的副作用是标准差都非常小。这有可能不利于某些模型,因为异常值的权重降低了。

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
pima_min_maxed = pd.DataFrame(scaler.fit_transform(pima_imputed), columns=pima_column_names)
print(pima_min_maxed.describe())
#        times_pregnant  plasma_glucose_concentration  diastolic_blood_pressure  triceps_thickness  serum_insulin         bmi  pedigree_function         age  onset_diabetes
# count      768.000000                    768.000000                768.000000         768.000000     768.000000  768.000000         768.000000  768.000000      768.000000
# mean         0.226180                      0.501205                  0.493930           0.240798       0.170130    0.291564           0.168179    0.204015        0.348958
# std          0.198210                      0.196361                  0.123432           0.095554       0.102189    0.140596           0.141473    0.196004        0.476951
# min          0.000000                      0.000000                  0.000000           0.000000       0.000000    0.000000           0.000000    0.000000        0.000000
# 25%          0.058824                      0.359677                  0.408163           0.195652       0.129207    0.190184           0.070773    0.050000        0.000000
# 50%          0.176471                      0.470968                  0.491863           0.240798       0.170130    0.290389           0.125747    0.133333        0.000000
# 75%          0.352941                      0.620968                  0.571429           0.271739       0.170130    0.376278           0.234095    0.333333        1.000000
# max          1.000000                      1.000000                  1.000000           1.000000       1.000000    1.000000           1.000000    1.000000        1.000000

我们将MinMaxScaler插入之前的机器学习流水线中;

knn_params = {'imputer__strategy': ['mean', 'median'], 'classify__n_neighbors': [1, 2, 3, 4, 5, 6, 7]}
knn = KNeighborsClassifier()
pipe_z = Pipeline([('imputer', SimpleImputer()), ('standardize', MinMaxScaler()), ('classify', knn)])
X = pima.drop(onset_field_name, axis=1)
y = pima[onset_field_name]
grid = GridSearchCV(pipe_z, knn_params)
grid.fit(X, y)
print(grid.best_score_, grid.best_params_)
# 0.7630336983278159 {'classify__n_neighbors': 7, 'imputer__strategy': 'median'}

行归一化

行归一化不是计算每列的统计值(均值、最小值、最大值等),而是会保证每行有单位范数(unit norm),意味着每行的向量长度相同。想象一下,如果每行数据都在一个n维空间内,那么每行都有一个向量范数(长度)。
pima数据集有8个字段,可以看做是有8个维度的向量空间,我们可以使用L2范数计算向量的长度;

我们可以利用公式直接计算矩阵的平均范数

pima_l2 = np.sqrt((pima_imputed**2).sum(axis=1))
pima_l2_mean = pima_l2.mean()
print(pima_l2_mean)
# 223.36222025823747

我们使用sklearn内置的Normalizer进行归一化处理,处理之后所有行的范数都是1;

from sklearn.preprocessing  import Normalizer

normalizer = Normalizer()
pima_row_normalized = pd.DataFrame(normalizer.fit_transform(pima_imputed), columns= pima_column_names)
pima_row_normalized_l2 = np.sqrt((pima_row_normalized**2).sum(axis=1))
pima_row_normalized_l2_mean = pima_row_normalized_l2.mean()
print(pima_row_normalized_l2_mean)
# 1.0

我们将Normalizer插入之前的机器学习流水线中;

knn_params = {'imputer__strategy': ['mean', 'median'], 'classify__n_neighbors': [1, 2, 3, 4, 5, 6, 7]}
knn = KNeighborsClassifier()
pipe_z = Pipeline([('imputer', SimpleImputer()), ('normalize', Normalizer()), ('classify', knn)])
X = pima.drop(onset_field_name, axis=1)
y = pima[onset_field_name]
grid = GridSearchCV(pipe_z, knn_params)
grid.fit(X, y)
print(grid.best_score_, grid.best_params_)
# 0.6980052627111452 {'classify__n_neighbors': 7, 'imputer__strategy': 'median'}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值