java 并发工具包 BlockingQueue-PriorityBlockingQueue

简介

PriorityBlockingQueue :优先级阻塞队列,即已谁优先谁先出的模式。
既然具有优先级,那么必然元素需要实现Comparable
PriorityBlockingQueue 是可视为一个无边界队列(只要不超出Integer.MAX_VALUE - 8),基于堆排序

初始化

    public PriorityBlockingQueue(int initialCapacity,
                                 Comparator<? super E> comparator) {
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
            //锁
        this.lock = new ReentrantLock();
        //非空线程条件
        this.notEmpty = lock.newCondition();
        //比较器
        this.comparator = comparator;
        //默认容量为8
        this.queue = new Object[initialCapacity];
    }
      public PriorityBlockingQueue(Collection<? extends E> c) {
        this.lock = new ReentrantLock();
        this.notEmpty = lock.newCondition();
        //是否需要进行构造堆
        boolean heapify = true; 
        //是否需要判断null
        boolean screen = true;  
        //如果是SortedSet 说明是有序的
        if (c instanceof SortedSet<?>) {

            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
            //获取比较器
            this.comparator = (Comparator<? super E>) ss.comparator();
            //不需要构造堆
            heapify = false;
        }
        //如果是PriorityBlockingQueue
        else if (c instanceof PriorityBlockingQueue<?>) {
            PriorityBlockingQueue<? extends E> pq =
                (PriorityBlockingQueue<? extends E>) c;
            this.comparator = (Comparator<? super E>) pq.comparator();
            //不需要进行null判断
            screen = false;
            if (pq.getClass() == PriorityBlockingQueue.class) // exact match
            //不需要构造堆
                heapify = false;
        }
        Object[] a = c.toArray();
        int n = a.length;
        //进行复制
        if (a.getClass() != Object[].class)
            a = Arrays.copyOf(a, n, Object[].class);
        if (screen && (n == 1 || this.comparator != null)) {
        //非空判断
            for (int i = 0; i < n; ++i)
                if (a[i] == null)
                    throw new NullPointerException();
        }
        this.queue = a;
        this.size = n;
        if (heapify)
            heapify();
    }
    //构造堆
       private void heapify() {
        Object[] array = queue;
        int n = size;
        //n/2-1 开始 (二叉树的最后一个父节点)
        int half = (n >>> 1) - 1;
        Comparator<? super E> cmp = comparator;
        if (cmp == null) {
        //如果比较器为null 则采用元素自身的比较器比较  自下往上比较
            for (int i = half; i >= 0; i--)
                siftDownComparable(i, (E) array[i], array, n);
        }
        else {
            for (int i = half; i >= 0; i--)
                siftDownUsingComparator(i, (E) array[i], array, n, cmp);
        }
    }
    //最小堆排序   了解堆排序应该很好理解
      private static <T> void siftDownComparable(int k, T x, Object[] array,
                                               int n) {
        if (n > 0) {
            Comparable<? super T> key = (Comparable<? super T>)x;
            int half = n >>> 1;           // loop while a non-leaf
            //当前k不能超过n/2 
            while (k < half) {
            //k的左 为k/2+1  右为k/2+2
                int child = (k << 1) + 1; // assume left child is least
                Object c = array[child];
                int right = child + 1;
                //左右对比 取小值
                if (right < n &&
                    ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
                    c = array[child = right];
                if (key.compareTo((T) c) <= 0)
                    break;
                  //将c赋给k位置
                array[k] = c;
                //k变成child 再次循环 直到break
                k = child;
            }
            //将最终的key赋给k位置
            array[k] = key;
        }
    }
   //和siftDownComparable 类似 只是比较器用的是初始化的比较器
    private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
                                                    int n,
                                                    Comparator<? super T> cmp) {
        if (n > 0) {
            int half = n >>> 1;
            while (k < half) {
                int child = (k << 1) + 1;
                Object c = array[child];
                int right = child + 1;
                if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
                    c = array[child = right];
                if (cmp.compare(x, (T) c) <= 0)
                    break;
                array[k] = c;
                k = child;
            }
            array[k] = x;
        }
    }

入队

//先说下扩容 该方法都是在循环中执行,当入队时,超出当前数组边界,则需要扩容
 private void tryGrow(Object[] array, int oldCap) {
 //先释放主锁 保证获取正常
        lock.unlock(); 
        Object[] newArray = null;
        //保证当前只有一个线程进行扩容
        if (allocationSpinLock == 0 &&
            UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
                                     0, 1)) {
            try {
            // 扩容算法 不多说
                int newCap = oldCap + ((oldCap < 64) ?
                                       (oldCap + 2) : // grow faster if small
                                       (oldCap >> 1));
                if (newCap - MAX_ARRAY_SIZE > 0) {    // possible overflow
                    int minCap = oldCap + 1;
                    if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
                        throw new OutOfMemoryError();
                    newCap = MAX_ARRAY_SIZE;
                }
                //初始化新数组
                if (newCap > oldCap && queue == array)
                    newArray = new Object[newCap];
            } finally {
                allocationSpinLock = 0;
            }
        }
        if (newArray == null) // back off if another thread is allocating
            Thread.yield();
            //占用主锁 扩容时,获取阻塞
        lock.lock();
        if (newArray != null && queue == array) {
            queue = newArray;
            //复制新数组
            System.arraycopy(array, 0, newArray, 0, oldCap);
        }
    }


    //add put 都是调用offer
  public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        final ReentrantLock lock = this.lock;
        //锁
        lock.lock();
        int n, cap;
        Object[] array;
        //循环扩容
        while ((n = size) >= (cap = (array = queue).length))
            tryGrow(array, cap);
        try {
            Comparator<? super E> cmp = comparator;
            //
            if (cmp == null)
                siftUpComparable(n, e, array);
            else
                siftUpUsingComparator(n, e, array, cmp);
            size = n + 1;
            notEmpty.signal();
        } finally {
            lock.unlock();
        }
        return true;
    }
  // 不知为何这里不进行超时操作
        public boolean offer(E e, long timeout, TimeUnit unit) {
        return offer(e); // never need to block
    }

//入队操作 确定最后一个位置的值
  private static <T> void siftUpComparable(int k, T x, Object[] array) {
        Comparable<? super T> key = (Comparable<? super T>) x;
        while (k > 0) {
        //最小值为0 对应while 从二叉树的最后一个父节点开始 一直往上直至0进行对比
            int parent = (k - 1) >>> 1;
            Object e = array[parent];
            if (key.compareTo((T) e) >= 0)
                break;
            array[k] = e;
            k = parent;
        }
        array[k] = key;
    }
//和siftUpComparable类似
    private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
                                       Comparator<? super T> cmp) {
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = array[parent];
            if (cmp.compare(x, (T) e) >= 0)
                break;
            array[k] = e;
            k = parent;
        }
        array[k] = x;
    }

出队

//出队 重排 出队主要是确定第一个位置的值
   private E dequeue() {
        int n = size - 1;
        if (n < 0)
            return null;
        else {
            Object[] array = queue;
            E result = (E) array[0];
            E x = (E) array[n];
            array[n] = null;
            Comparator<? super E> cmp = comparator;
            //还是熟悉的siftDownComparable方法 直接确定0位置值
            if (cmp == null)
                siftDownComparable(0, x, array, n);
            else
                siftDownUsingComparator(0, x, array, n, cmp);
            size = n;
            return result;
        }
    }
  public E poll() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return dequeue();
        } finally {
            lock.unlock();
        }
    }
//阻塞直到队列有值出现并返回
    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        E result;
        try {
            while ( (result = dequeue()) == null)
                notEmpty.await();
        } finally {
            lock.unlock();
        }
        return result;
    }
//过期时间内无值则返回null
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        E result;
        try {
            while ( (result = dequeue()) == null && nanos > 0)
                nanos = notEmpty.awaitNanos(nanos);
        } finally {
            lock.unlock();
        }
        return result;
    }
//校验队列是否有值
    public E peek() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return (size == 0) ? null : (E) queue[0];
        } finally {
            lock.unlock();
        }
    }

总结

优先队列 相对其他队列来说, 具有对比排序的功能,也可以根据自己需求增加自己的比较器进行排序。其中DelayQueue中使用了优选队列,所以DelayQueue拥有排序功能!
当然因为不管是出队还是入队,都需要进行排序,所以效率上来讲不如ArrayBlockingQueue,但是如果需要排序队列的需求,优选PriorityBlockingQueue

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值