题意:
将n的各位数字重新排列(不允许有前导零) 求 可以构造几个%m等于0的数字
思路:
dp题 由于最多只有18个数字所以可以用二进制表示 dp[i][j]表示使用了i(二进制)表示的数字%m等于j的个数
状态转移 dp[i][ (k*10 + dig[j]) %y ]+=dp[ i ^ (1<<j) ][k]
注意去重 如果一个数字有x个 那么对于这个数字就产生了x!的重复
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
__int64 x;
__int64 dp[1<<18][100],a[20];
int dig[20],num[10];
int y,len;
int main()
{
int i,j,k;
scanf("%I64d%d",&x,&y);
while(x)
{
i=x%10;
x/=10;
dig[len++]=i;
num[i]++;
}
sort(dig,dig+len);
for(i=0;i<len;i++)
if(dig[i])
dp[1<<i][dig[i]%y]=1;
for(a[0]=1,i=1;i<=len;i++) a[i]=a[i-1]*i;
for(i=1;i<(1<<len);i++)
{
for(j=0;j<len;j++)
{
if(i&(1<<j))
{
for(k=0;k<y;k++)
{
dp[i][(k*10+dig[j])%y]+=dp[i^(1<<j)][k];
}
}
}
}
//for(i=1;i<(1<<len);i++)
// for(k=0;k<y;k++) printf("%d %d %I64d\n",i,k,dp[i][k]);
for(i=0;i<10;i++) dp[(1<<len)-1][0]/=a[num[i]];
printf("%I64d\n",dp[(1<<len)-1][0]);
return 0;
}