漫游数学世界
文章平均质量分 78
数学是什么?音乐家说:数学是世界上最和谐的音符。植物学家说:世界上没有比数学更美的花朵。美学家说:哪里有数学,哪里才有真正的美。哲学家说:你可以不相信上帝,但是你必须相信数学,世界什么都在变,唯有数学是永恒的。
酒城译痴无心剑
国家三级笔译。一手代码一手诗,酸甜苦辣寸心知。杏坛泊梦千秋事,万古云山日迟迟。讲授高等数学、Java高级程序设计、动态网站设计与开发(JSP、Servlet)、企业信息系统设计与开发(Spring Boot)、智能移动终端应用开发(Android)、Python Web开发(Django)、大数据离线分析(Hadoop、Hive、Spark)、计算机专业英语等课程,教学深入浅出,语言生动、经验丰富,深受学生好评。指导学生参加移动应用开发省赛和国赛,多次获奖,被授予优秀指导教师称号。热爱翻译,曾翻译西奥尼·帕帕斯数学科普读物《天天数学》与两千余首诗词,已形成独特的译诗风格。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
单位分数(埃及分数)分解实战
把正有理数写成互不相同的分子为1的单位分数之和,即单位分数分解,又称埃及分数,形式唯一最短。原创 2025-07-31 17:45:24 · 258 阅读 · 0 评论 -
漫漫数学之旅046
在信息技术飞速发展的今天,数据安全已成为全球关注的焦点。黑客攻击、数据泄露和电脑盗窃等安全事件频发,给个人隐私和企业安全带来了严重威胁。为了应对这些挑战,电脑工程师们不断探索新的安全技术。其中,富兰克·彼得(Frank Peter)在美国新墨西哥州爱伯克奇城(Albuquerque)的桑地亚国家实验室(Sandia National Laboratories)设计了一种创新的安全装置——电脑芯片上的电机组合锁。原创 2025-07-06 16:11:39 · 91 阅读 · 0 评论 -
林浩然与杨凌芸的数学奇遇记:从选择公理到“分球术”
在一个普通的理工学院,有着两位志趣相投的好友——林浩然和杨凌芸。林浩然是个对集合论情有独钟的数学爱好者,而杨凌芸则是热衷于几何学与概率论的才女。两人经常在课后讨论那些看似平常实则深奥的数学原理。原创 2024-01-26 20:40:41 · 583 阅读 · 0 评论 -
漫漫数学之旅035
一码就是一码,这话听起来似乎毋庸置疑,就像我们常说的“一加一等于二”一样自然。但如果我们追溯到古代,在没有现代精密测量工具的年代,"一码"的长度其实是相当随意和相对的,甚至可能随着国王的心情或体型变化而变化。原创 2024-03-03 17:38:45 · 1396 阅读 · 0 评论 -
漫漫数学之旅043
在地球漫长的生命历程中,科学家们如同破解密码的侦探,通过自然界的蛛丝马迹解读气候变化。美国气候学家迈克尔·曼团队的研究,正是这种科学探索的典范。他们整合树木年轮、冰芯记录与现代气象数据,绘制出跨越千年的气候图谱,揭示出20世纪末异常的气候波动。原创 2025-02-03 10:18:18 · 912 阅读 · 0 评论 -
漫漫数学之旅010
在古老而又神秘的数学世界里,有一个看似简单实则深奥的问题,困扰了人们几个世纪:如果要像堆积桔子那样将无数个大小完全相同的球体尽可能紧密地摆放在一起,怎样才能达到最优的空间利用率呢?这个问题最早可以追溯到1611年的大科学家约翰尼斯·开普勒那个满脑子星辰大海的时代。这位天才设想了一种奇妙的堆叠方式,他仿佛是宇宙空间的设计师,琢磨着如何让这些“小星球”以最节省空间的方式排列在我们三维的世界中。原创 2024-01-23 14:23:49 · 1172 阅读 · 0 评论 -
漫漫数学之旅044
公元3世纪,希腊数学家丢番图在其著作《算术》中,尽管引入了符号化的方法来解方程,但仍然拒绝将“-4”作为方程的解,这反映了当时数学界对负数的普遍排斥。原创 2025-02-10 10:18:44 · 914 阅读 · 0 评论 -
漫漫数学之旅026
在游戏世界的历史长河中,古老的棋类游戏犹如智慧的化石,历经千年磨砺,至今依然熠熠生辉。而这些古老的游戏如今不仅活跃在公园的老石桌、家庭的茶几上,更是在数字化时代下华丽转身,跃然于电脑屏幕之上。比如,单人纸牌不再需要真实纸牌就能让你体验排列组合的乐趣;扑克牌游戏则可以随时随地与全球玩家在线对决,甚至还有AI陪你练习高超技巧。原创 2024-02-19 15:46:59 · 927 阅读 · 0 评论 -
漫漫数学之旅031
你可能以为织布机和计算机之间除了都由人类创造以外,就再无瓜葛,那我得告诉你,真相可能会让你大跌眼镜,甚至让最硬核的程序员也要对这台古老机器献上崇高的敬意。想象一下,如果织布机也能编程,是不是觉得有点匪夷所思?嘿,别怀疑,这是真事儿!原创 2024-02-23 21:05:07 · 984 阅读 · 0 评论 -
林浩然的拓扑探险记
故事始于实数轴上的连续函数和极限游戏。林浩然发现这些概念并非仅限于实数世界,它们就像魔法符咒一样可以被复制并粘贴到更广阔的空间领域中。于是,他开始了对点集拓扑学的奇幻探险。原创 2024-02-02 12:28:11 · 1159 阅读 · 0 评论 -
漫漫数学之旅042
数字2,看似简单,却蕴含着丰富的文化、哲学和数学意义。它不仅是自然数序列中的第二个数字,更是人类认知世界的一个重要符号。从数学的角度来看,2是第一个偶数,也是唯一的偶素数。它是最小的质数之一,同时也是所有偶数的基本因子。这种独特的数学属性使得2在数论中占据了重要地位。此外,2还是二进制系统的基础,而二进制是现代计算机技术的核心,可以说,数字2在科技发展中扮演了不可或缺的角色。原创 2025-01-12 11:24:41 · 935 阅读 · 0 评论 -
漫漫数学之旅020
假如公元250年,丢番图的先进数学思想如其对实数符号系统深刻见解被古希腊学界广泛接纳并深入研究,那么数学史很可能会翻开一页充满奇趣色彩的新篇章。原创 2024-02-15 10:22:20 · 996 阅读 · 0 评论 -
中国古代数学与现代数学的辉煌之路
现代中国数学在全球数学领域中是一个充满活力且有影响力的力量。该国的数学家通过开创性的研究、国际合作和对数学教育的承诺,不断塑造着数学的未来。原创 2024-01-25 19:25:00 · 1475 阅读 · 0 评论 -
漫漫数学之旅028
在那个骑士披挂铁甲、巫师研习古老咒语的欧洲中世纪,妇女们可不是每天都能跑去大学里听教授讲授微积分或者探讨宇宙奥秘的。当时的社会画卷上,女性接受教育这件事,简直比独角兽出现在菜市场还稀罕。你可能会问:“那她们怎么学知识?”别担心,那时候的智慧女神并未完全缺席人间烟火,只不过她藏身在了一片静谧而神圣的地方——修道院。原创 2024-02-21 09:51:15 · 968 阅读 · 0 评论 -
初探e的麦克劳林级数
本文介绍了麦克劳林级数的概念及其在计算数学常数e的应用。通过泰勒级数展开,我们得到了e的级数表示,这个级数收敛于e,展示了无穷级数在数学分析中的重要作用。原创 2024-11-25 17:53:19 · 734 阅读 · 0 评论 -
漫漫数学之旅011
阿基米德,叙拉古的数学奇才,实在是古代版的数学巨星。他的著作就像数学版的珍宝藏品,为古希腊文化添了一抹璀璨的色彩,而不是只是数学版的翻译小说。原创 2024-01-24 15:03:55 · 1147 阅读 · 0 评论 -
漫漫数学之旅008
你是否曾幻想过,只需听一首曲子,就能瞬间化身数学小天才,解决那些复杂的几何难题?这听起来就像魔法,但在科研的世界里,它似乎真的存在——至少对于莫扎特的D大调双钢琴奏鸣曲(K.448)来说,确实有那么点儿神奇的效果。原创 2024-01-20 11:17:41 · 1055 阅读 · 0 评论 -
漫漫数学之旅040
在13世纪,拜占庭帝国的僧侣们已经掌握了对书写材料进行再利用的技术,这在当时是一种常见的做法,尤其是在珍贵的羊皮纸上。这种再利用的过程通常涉及洗刷掉原有的文字,以便在上面重新书写。然而,这种做法也意味着原始文本的永久丧失。原创 2024-12-17 09:09:32 · 1090 阅读 · 0 评论 -
漫漫数学之旅009
伯努利家族,这个听起来像是马戏团里高超杂技世家的名字,实际上是一个星光熠熠的数学家集群。在17世纪至18世纪的欧洲科学界,他们就像是一串璀璨的数学明珠,镶嵌在了历史的长河中,以其独特的家族竞争和卓越贡献,在数学乃至物理学领域留下了深刻的印记。原创 2024-01-21 08:33:45 · 1267 阅读 · 0 评论 -
漫漫数学之旅007
让我们穿越时空,聚焦在印度璀璨的数学与天文学历史中,一本名为《增订婆罗门历数全书》(Brahma Sphuta Siddhanta)的伟大著作映入眼帘。该书由杰出的古印度天文学家和数学家婆罗门笈多(Bhramagupta,公元598-665年)倾力编撰,它不仅涵盖了深邃丰富的天文学理论,更包含了一系列奠定现代数学基石的重要思想。原创 2024-01-19 15:20:29 · 1075 阅读 · 0 评论 -
林浩然矩阵江湖历险记
在那充满神秘色彩的矩阵世界里,林浩然面对的挑战是驯服一个具有六个个性元素的2×3矩阵——“小三儿”。这个矩阵由两行三列组成,每一个元素都像是棋盘上的一枚棋子,它们紧密排列在一起,形成了一种微妙而复杂的阵势。原创 2024-01-26 17:25:09 · 1205 阅读 · 0 评论 -
数学在现代经济学研究中的作用
经济学,作为一门研究人类如何在资源有限的情况下做出选择的社会科学,历来都与数学有着紧密的联系。随着科技的发展,特别是在信息时代数据量的爆炸性增长,数学在经济学中扮演的角色愈发重要。本文旨在探讨数学在现代经济学研究中的多方面作用,并阐述其在理论和实证研究中的应用。原创 2024-02-20 08:29:34 · 1058 阅读 · 0 评论 -
高中数学练习:换元法解方程4^x + 9^x + 25^x = 6^x + 10^x + 15^x
通过底数分解、幂函数性质变形、换元法和配方法,我们成功解出了方程4^x + 9^x + 25^x = 6^x + 10^x + 15^x。原创 2024-11-23 11:02:32 · 856 阅读 · 0 评论 -
林浩然的“微分剑法”大显神威
在数学王国的一隅,有一位名叫林浩然的智者,他以其独特的“微分剑法”名震江湖。这门源自微积分的绝世武学,让他成功解决了瞬时速度难题和曲线切线问题,犹如一把神奇的钥匙,打开了微观世界的大门。原创 2024-02-01 19:38:49 · 542 阅读 · 0 评论 -
漫漫数学之旅021
想象一下,你坐在舒适的沙发上,却能瞬间化身为一只勤劳的小蜜蜂,在虚拟的花海中嗡嗡飞翔,感受那繁花似锦的世界与传播生命的喜悦。或者,你只需戴上一副特制的眼镜,就能摇身一变成为纳米级的探险家,深入到那些肉眼无法触及的微观领域,与原子、分子共舞,像极了科幻大片中的超级英雄。原创 2024-02-16 09:17:13 · 990 阅读 · 0 评论 -
林浩然的流形漫游与微分几何奇遇记
在数学王国的另一片疆域,我们的主人公林浩然是一位热衷于探索未知世界的冒险家。这一次,他将带领我们穿越到神秘的“流形世界”,并在这个奇妙的舞台上,演绎一场融合了拓扑、微积分和几何的幽默大戏。原创 2024-02-02 13:06:14 · 1706 阅读 · 0 评论 -
林浩然与他的“圆”满人生
在那遥远的数学王国,有一个名叫林浩然的小哥,他可不是一般的程序员,而是个痴迷于几何之美、生活之趣的大玩家。话说有一天,林浩然正沉浸在毕达哥拉斯的数论世界中,突然脑洞大开,他望着屏幕上的那个完美无缺的圆,忍不住感慨万分。原创 2024-01-31 18:33:08 · 594 阅读 · 0 评论 -
漫漫数学之旅023
想象一下,你手中握着一个任意的自然数,就像一个神秘的小箱子。别看它外表平平无奇,一旦我们用一把名叫“素数分解”的神奇钥匙打开这个箱子,里面竟藏着一串独一无二、无法复制的“宝石项链”。这些“宝石”,就是构成这个自然数的素数因子。原创 2024-02-17 09:25:23 · 959 阅读 · 0 评论 -
四种方法求解x + y = 7条件下xy的最大值
我们使用了四种不同的方法来求解$x + y = 7$条件下$xy$的最大值。这些方法包括代数方法(配方法)、均值换元法、微积分方法(一阶导数为0)以及基本不等式(AM-GM不等式)。每种方法都得出相同的结果。原创 2024-11-22 18:06:10 · 1243 阅读 · 0 评论 -
高中数学:数列和向量计算题
在高中数学学习中,通过分类习题训练,如数列问题、向量运算、函数性质探究等专题练习,有助于学生系统性地掌握各类知识点,提升分析和解决实际数学问题的能力,并培养从不同角度和层次思考问题的习惯,以达到深度理解和灵活应用的目标。原创 2024-02-08 23:20:52 · 1163 阅读 · 0 评论 -
漫漫数学之旅019
1974年,匈牙利建筑界的奇才艾默·鲁比克(Emo Rubik)在一次灵感乍现的瞬间,犹如魔术师从帽子里变出兔子一般,创造出了一个看似简单实则复杂的三维智力玩具——鲁比克方块。这个魔幻的小立方体由27个活泼好动、各怀绝技的小方块组成,它们像是拥有了独立灵魂的舞者,可以围绕三个维度上的轴线自由旋转,仿佛在上演一场无声的太空芭蕾。原创 2024-02-14 09:46:43 · 1015 阅读 · 0 评论 -
漫漫数学之旅027
在时光的长河里,探索光速的故事就像是一场追逐光源的宇宙版“猫鼠游戏”。早在爱因斯坦提出他的宇宙常数之前,人们对光速的好奇心就犹如对星星闪烁背后的秘密一样古老。原创 2024-02-20 08:36:55 · 966 阅读 · 0 评论 -
欧拉37%法则:理性决策的最佳策略
欧拉37%法则,也称37%法则或最优停止理论,是一种决策策略,用于在不确定性下做出最优选择。例如在一系列相亲中,前37%的候选人仅用于观察,之后一旦遇到比之前所有人都好的,就选择那个人。该法则旨在最大化选择最佳选项的概率。原创 2024-11-17 12:05:17 · 5171 阅读 · 0 评论 -
漫漫数学之旅018
在遥远的古代,当人们还在用石头刻字、兽皮记事的时代,计量单位就如同那个时代的语言一样,五花八门、各自为政。然而,智慧的埃及人率先做出了一个令人拍案叫绝的举动——他们如同打造神祇的信物一般,精心铸造了两种神秘的金属条。这可不是普通的铁棍或铜棒,而是蕴含着高度精确度量魔法的神器:长的一根对应着20.59英寸(这个长度让人不禁想起古埃及法老的权杖,其威严与精准并存),短的一根则象征着17.72英寸(就像王后用来测量宝石的皇家标尺)。这两个数字虽然看似平常,却开启了标准化计量的新纪元。原创 2024-02-13 10:36:08 · 1120 阅读 · 0 评论 -
漫漫数学之旅038
哥特弗莱德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz)是17世纪晚期的一位多才多艺的学者,他在数学、哲学、法律、外交和工程等多个领域都留下了深刻的印记。作为微积分的共同发明者之一,莱布尼茨与艾萨克·牛顿独立发展了这一数学分支,为现代物理学和工程学的发展奠定了基础。他的微积分工作,特别是积分符号和理论,至今仍被广泛使用。原创 2024-11-08 20:18:30 · 722 阅读 · 0 评论 -
漫漫数学之旅041
在数学史上,英国与欧洲大陆之间的微积分发展差异是一个值得深入探讨的话题。这场差异的根源可以追溯到17世纪末,当时两位数学巨匠——艾萨克·牛顿和戈特弗里德·威廉·莱布尼茨——独立发展了微积分的基本概念。尽管两人的成就在很多方面是相似的,但他们的方法和符号系统存在显著差异。牛顿的微积分形式,被称为“流数法”,主要在英国学术圈内传播,而莱布尼茨的符号系统和方法在欧洲大陆上得到了广泛的应用。原创 2024-12-27 18:47:25 · 1005 阅读 · 0 评论 -
漫漫数学之旅036
芝诺的悖论,以其独特的“无穷分割”方法,挑战了我们对时间和空间的常规理解。这个悖论的核心观点是:在从点A到点B的过程中,你需要经过无穷多个中点,因此需要无穷多的时间。这听起来像是一个无法解决的难题,但实际上,它揭示了我们对时间和空间的误解。原创 2024-03-10 16:49:04 · 900 阅读 · 0 评论 -
林浩然的数学奇遇记:从计算机视觉到深海中的数学宝藏
在那个充满像素与算法的世界里,有一位名叫林浩然的主角,他并非怀揣着成为华罗庚或者陈景润那样的数学家梦想,而是作为一个志在攀登计算机科学高峰的学生。他的初心很简单,就是希望借助巨人们的肩膀,窥见更深远的研究视野。原创 2024-01-25 21:59:12 · 1231 阅读 · 0 评论 -
漫漫数学之旅015
莱昂哈德·欧拉,这位18世纪的数学巨擘,不仅在学术界享有“多产狂魔”的美誉,而且他的生活故事也颇具喜剧色彩,仿佛是上帝派来地球的一位“算术相声演员”。想象一下,他的人生剧本就像一部充满惊奇与幽默元素的科学连续剧——《盲眼数学家和他的十三个孩子》。原创 2024-02-04 19:56:38 · 1014 阅读 · 0 评论 -
深度理解实分析:超越公式与算法的学习方法
通过慢速阅读、写作和仔细思考,我们不仅能够掌握实分析的知识,还能够培养出解决复杂数学问题的能力。通过写作,我们可以将阅读过程中的理解转化为自己的语言,这不仅有助于巩固记忆,还能揭示我们对材料理解的深度。在写作时,我们应该注重清晰和逻辑性,尝试用自己的话语来解释复杂的数学概念和证明过程。通过这种批判性的思考,我们能够更加深刻地理解数学理论,并在未来的学习和研究中灵活运用。此外,《普林斯顿数学分析读本》是“普林斯顿××读本”系列的第二本作品,该系列图书以其通俗易懂且略带幽默的风格受到读者的欢迎。原创 2024-02-15 22:17:31 · 1625 阅读 · 0 评论
分享