labelme2coco

import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
import sys, os
from shapely.geometry import Polygon

class labelme2coco(object):
    def __init__(self,labelme_json=[], path="", save_json_path='./instances_train2014.json'):
        '''
        :param labelme_json: 所有labelme的json文件路径组成的列表
        :param save_json_path: json保存位置
        '''
        self.labelme_json=labelme_json
        self.save_json_path=save_json_path
        self.images=[]
        self.categories=[]
        self.annotations=[]
        # self.data_coco = {}
        self.label=[]
        self.annID=1
        self.height=0
        self.width=0
        self.path = path

        self.save_json()

    def data_transfer(self):
        for num,json_file in enumerate(self.labelme_json):
            with open(json_file,'r') as fp:
                data = json.load(fp)  # 加载json文件
                self.images.append(self.image(data,num))
                for shapes in data['shapes']:
                    #label=shapes['label'].split('_')
                    label=shapes['label']
                    #print(shapes['label'])
                    if label not in self.label:
                        self.categories.append(self.categorie(label))
                        self.label.append(label)
                    points=shapes['points']
                    self.annotations.append(self.annotation(points,label,num))
                    self.annID+=1
        print(self.label)

    def image(self,data,num):
        image={}

        # img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据
        #img=io.imread("./images/" + data['imagePath']) # 通过图片路径打开图片
        #print("./images/" + data['imagePath'])
        img = cv2.imread(os.path.join(self.path, data['imagePath']), 0)
        height, width = img.shape[:2]
        img = None
        image['height']=height
        image['width'] = width
        image['id']=num+1
        image['file_name'] = data['imagePath'].split('/')[-1]

        self.height=height
        self.width=width

        return image

    def categorie(self,label):
        categorie={}
        categorie['supercategory'] = label
        categorie['id']=len(self.label)+1 # 0 默认为背景
        categorie['name'] = label
        return categorie

    def annotation(self,points,label,num):
        annotation={}
        annotation['segmentation']=[list(map(int, list(np.asarray(points).flatten())))]
        poly = Polygon(points)
        area_ = round(poly.area,6)
        annotation['area'] = area_
        annotation['iscrowd'] = 0
        annotation['image_id'] = num+1
        # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
        # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
        annotation['bbox'] = list(map(float,self.getbbox(points)))

        annotation['category_id'] = self.getcatid(label)

        annotation['id'] = self.annID
        return annotation

    def getcatid(self,label):
        for categorie in self.categories:
            if label==categorie['name']:
                return categorie['id']
        return -1

    def getbbox(self,points):
        # img = np.zeros([self.height,self.width],np.uint8)
        # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA)  # 画边界线
        # cv2.fillPoly(img, [np.asarray(points)], 1)  # 画多边形 内部像素值为1
        polygons = points
        mask = self.polygons_to_mask([self.height,self.width], polygons)
        return self.mask2box(mask)

    def mask2box(self, mask):
        '''从mask反算出其边框
        mask:[h,w]  0、1组成的图片
        1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
        '''
        # np.where(mask==1)
        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]
        # 解析左上角行列号
        left_top_r = np.min(rows)  # y
        left_top_c = np.min(clos)  # x

        # 解析右下角行列号
        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)

        # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
        # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
        # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r]  # [x1,y1,x2,y2]
        return [left_top_c, left_top_r, right_bottom_c-left_top_c, right_bottom_r-left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式

    def polygons_to_mask(self,img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask

    def data2coco(self):
        data_coco={}
        data_coco['images']=self.images
        data_coco['categories']=self.categories
        data_coco['annotations']=self.annotations
        return data_coco

    def save_json(self):
        self.data_transfer()
        self.data_coco = self.data2coco()
        # 保存json文件
        json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4)  # indent=4 更加美观显示



if __name__ == '__main__':
    path = sys.argv[1]
    print(os.path.join(path, '*.json'))
    labelme_json=glob.glob(os.path.join(path, '*.json'))
    print("json data numbers: ", len(labelme_json))
    labelme2coco((labelme_json), path, './instances_train2014.json')

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值