HDUOJ_1869(六度分离)(dijkstra)
六度分离
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5978 Accepted Submission(s): 2414
Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
Sample Input
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
Sample Output
Yes Yes
提示:此题需转化一下,就可以用dijkstra解决了,中间最多有6个人((把两个人之间看作有一条边)则中间会有7条边),可以理解为两点间最多有7条边长为1的边。把两个互相认识的人看作两点间距离为1的边。此题证明是否满足六度分离,可以这样证明:是否任意两个点间的距离都不大于7,若满足,则说明六度分离理论成立,反之,若存在两个点的距离大于7,就不满足六度分离理论。
My solution:
/*2015.8.17*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int map[110][110],d[110],mark[110],n;
void dijkstra(int s)
{
int i,v;
d[s]=0;
while(1)
{
v=-1;
for(i=0;i<n;i++)
if(!mark[i]&&(v==-1||d[v]>d[i]))
v=i;
if(v==-1)
break;
mark[v]=1;
for(i=0;i<n;i++)
d[i]=min(d[i],d[v]+map[v][i]);
}
}
int main()
{
int i,j,m,a,b,k,c,t;
while(scanf("%d%d",&n,&m)==2)
{
k=0;
memset(map,0x3f,sizeof(map));/*map数组必须在输入数据前初始化,如果在输入数据后再初始化,则输入的数据将被覆盖*/
//memset(mark,0,sizeof(mark));
//memset(d,0x3f,sizeof(d)); /*因为mark数组和记录数组(d)在下面需多次调用,因此在for循环里初始化*/
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
map[a][b]=1;
map[b][a]=1;/*特别注意,这题是无向图,刚开始没注意到,结果总是出错,最后才发现忘记写这一行代码*/
}
/*下面是重点*/
for(i=0;i<n-1;i++)/*通过改变起点和终点,得到map数组中所有组合的数据,并判断每个组合是否满足情况,不满足则结束循环*/
{
memset(mark,0,sizeof(mark));/*起点每改变一次,mark数组和记录数组(d)就初始化一次*/
memset(d,0x3f,sizeof(d));
dijkstra(i);/*通过for循环设置多个起点*/
for(j=i;j<n;j++)
{
t=d[j]; /*通过for循环设置多个终点*/
map[i][j]=t;
map[j][i]=t;
if(map[i][j]>7)/*当不满足情况时结束循环*/
{
k++;
break;
}
}
if(k>0)
{
printf("No\n");/*不满足时,输出结果,并结束循环*/
break;
}
}
if(i==n-1)/*没有找到不满足的情况*/
printf("Yes\n");
}
return 0;
}