Floyed:NEEPUOJ3016六度分离

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/belous_zxy/article/details/79955430


一道图论求最短路问题,采用邻接矩阵存储。因为涉及到了所有数据的最短路,因此采用Floyed(复杂度n^3),邻接矩阵的最大值N也不大,题里指出是小于100的,不用考虑超时间的问题。

建立邻接矩阵,过一遍Floyed,因为是无向图,只需要遍历下三角矩阵中是否有超出7(中间最多6个人,即最大值为7)的值。如果有超过7的,立即终止遍历输出No,全部遍历完成没有发现,就输出Yes。

#include<stdio.h>
#include<stdlib.h>
void initialize(int max);
int matrix[100][100];
int main(int argc,char* argv[])
{
	int m,n;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		int i,j;
		initialize(m);
		while(n--)
		{
			scanf("%d%d",&i,&j);
			matrix[i][j]=matrix[j][i]=1;
		}
		int x,y,z,col=0;
		for(x=0;x<m;x++)
			for(y=0;y<m;y++)
				for(z=0;z<m;z++)
					if(matrix[y][z]>matrix[y][x]+matrix[x][z])
						matrix[y][z]=matrix[y][x]+matrix[x][z];
		for(x=1;x<m;x++)
		{
			for(y=0;y<x;y++)
				if(matrix[x][y]>7)
				{
					col=1;
					break;
				}
			if(col)
				break;
		}
		if(col)
			printf("No\n");
		else
			printf("Yes\n");
    }
	return EXIT_SUCCESS;
}
void initialize(int max)
{
	const int inf=1<<20;
	int i,j;
	for(i=0;i<max;i++)
		for(j=0;j<max;j++)
			if(i!=j)
				matrix[i][j]=matrix[j][i]=inf;
			else
				matrix[i][j]=matrix[j][i]=0;
	return;
}

阅读更多

没有更多推荐了,返回首页