最小树形图

poj 3164  Command Network


#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 120
#define INF 99999999999.0
int n,m;
struct node
{
    double x,y;
} a[maxn];
inline double get_dis(node a,node b)
{
    return sqrt((a.x - b.x)*(a.x - b.x)+(a.y - b.y)*(a.y - b.y));
}
double map[maxn][maxn];
bool flag[maxn];
int pre[maxn];
void dfs(int x)
{
    flag[x]=true;
    for(int i=1; i<=n; i++)
        if(!flag[i]&&map[x][i]!=INF)
            dfs(i);
}
bool check()//检查联通
{
    memset(flag,0,sizeof(flag));
    dfs(1);
    for(int i=1; i<=n; i++)
        if(!flag[i])return false;
    return true;
}
double solve()
{
    memset(flag,0,sizeof(flag));//flag是true的点是被去掉的点
    int i,j,k;
    double ans=0;
    while(1)
    {
        for(i=2; i<=n; i++)
        if(!flag[i])
            {
                pre[i]=i;
                map[i][i]=INF;
                for(j=1; j<=n; j++)
                if(!flag[j])
                    {
                        if(map[pre[i]][i]>map[j][i])
                            pre[i]=j;
                    }
            }
        for(i=2; i<=n; i++)
        if(!flag[i])
            {
                bool mark[maxn];
                memset(mark,0,sizeof(mark));
                for(j=i; j!=1&&!mark[j]; mark[j]=true,j=pre[j]);
                //寻找环,返回在环内的一点(注意从i出发能找到换不代表n在环内)
                if(j==1)continue;
                i=j;
                ans+=map[pre[i]][i];
                for(j=pre[i]; j!=i; j=pre[j])
                {
                    ans+=map[pre[j]][j];
                    flag[j]=true;
                }
                for(j=1; j<=n; j++)if(!flag[j]&&map[j][i]!=INF)
                        map[j][i]-=map[pre[i]][i];
                for(j=pre[i]; j!=i; j=pre[j])
                {
                    for(k=1; k<=n; k++)if(!flag[k]&&map[j][k]!=INF)
                            map[i][k]=min(map[i][k],map[j][k]);
                    for(k=1; k<=n; k++)if(!flag[k]&&map[k][j]!=INF)
                            map[k][i]=min(map[k][i],map[k][j]-map[pre[j]][j]);
                }
                break;
            }
        if(i>n)//说明没有环了。
        {
            for(j=2; j<=n; j++)if(!flag[j])
                    ans+=map[pre[j]][j];
            return ans;
        }
    }
}
int main()
{
    int i,j,x,y;
    while(scanf("%d%d",&n,&m)!=-1)
    {
        for(i=1; i<=n; i++)
            scanf("%lf%lf",&a[i].x,&a[i].y);
        for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                map[i][j]=INF;
        for(i=1; i<=m; i++)
        {
            scanf("%d%d",&x,&y);
            if(x==y)continue;//消除自环
            map[x][y]=get_dis(a[x],a[y]);
        }
        if(!check())//检查有向图是否联通
        {
            printf("poor snoopy\n");
        }
        else
        {
            printf("%.2lf\n",solve());
        }
    }
}

/*
算法核心需要三个步骤:
①找出每个点最小的入边in[v],如果有除根节点之外的点没有入边,显然无解。
②累加出上面所有点的最小入边的值。
找出图中的环,如果没有环,终止,返回解;否则,缩点,转入第三步。
③重新构图。令每条点v的入边w的值都减去in[v]。转入第一步。

不固定根
作法是,新设置一个人工点,向每一个顶点连一条边(称为"另类边"),权值至少比原图所有边之和还大1。
然后,以改人工点为root,求一次最小树形图。并在过程中记录使用过的边(即每次找出的最小入边)。
如果使用的 "另类边" 的次数大于1,就是impossible.否则可以找出这条边,找出那个city即可。
因为要找最小的城市,所以,我们添加边的时候,按照城市依次添加边root-->城市i就好了。
*/


2248.   Channel Design


#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 102
#define INF 99999999
int n,m;
int map[maxn][maxn];
bool flag[maxn];
int pre[maxn];
void dfs(int x)
{
    flag[x]=true;
    for(int i=1; i<=n; i++)
        if(!flag[i]&&map[x][i]!=INF)
            dfs(i);
}
bool check()//检查联通
{
    memset(flag,0,sizeof(flag));
    dfs(1);
    for(int i=1; i<=n; i++)
        if(!flag[i])return false;
    return true;
}
int solve()
{
    memset(flag,0,sizeof(flag));//flag是true的点是被去掉的点
    int i,j,k;
    int ans=0;
    while(1)
    {
        for(i=2; i<=n; i++)
        if(!flag[i])
            {
                pre[i]=i;
                map[i][i]=INF;
                for(j=1; j<=n; j++)
                if(!flag[j])
                    {
                        if(map[pre[i]][i]>map[j][i])
                            pre[i]=j;
                    }
            }
        for(i=2; i<=n; i++)
        if(!flag[i])
            {
                bool mark[maxn];
                memset(mark,0,sizeof(mark));
                for(j=i; j!=1&&!mark[j]; mark[j]=true,j=pre[j]);
                //寻找环,返回在环内的一点(注意从i出发能找到换不代表n在环内)
                if(j==1)continue;
                i=j;
                ans+=map[pre[i]][i];
                for(j=pre[i]; j!=i; j=pre[j])
                {
                    ans+=map[pre[j]][j];
                    flag[j]=true;
                }
                for(j=1; j<=n; j++)if(!flag[j]&&map[j][i]!=INF)
                        map[j][i]-=map[pre[i]][i];
                for(j=pre[i]; j!=i; j=pre[j])
                {
                    for(k=1; k<=n; k++)if(!flag[k]&&map[j][k]!=INF)
                            map[i][k]=min(map[i][k],map[j][k]);
                    for(k=1; k<=n; k++)if(!flag[k]&&map[k][j]!=INF)
                            map[k][i]=min(map[k][i],map[k][j]-map[pre[j]][j]);
                }
                break;
            }
        if(i>n)//说明没有环了。
        {
            for(j=2; j<=n; j++)if(!flag[j])
                    ans+=map[pre[j]][j];
            return ans;
        }
    }
}
int main()
{
    while(scanf("%d%d", &n ,&m) != EOF)
    {
        if(n == 0 && m == 0)  break;

        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                map[i][j]=INF;

        int x, y, z;
        for(int i = 1; i <= m; i++)
        {
            scanf("%d%d%d",&x, &y, &z);
            if(x == y) continue;//消除自环
            map[x][y] = min(map[x][y], z);
        }

        if(!check())
        {
            printf("impossible\n");
        }
        else
        {
            printf("%d\n", solve());
        }
    }
    return 0;
}

/*
算法核心需要三个步骤:
①找出每个点最小的入边in[v],如果有除根节点之外的点没有入边,显然无解。
②累加出上面所有点的最小入边的值。
找出图中的环,如果没有环,终止,返回解;否则,缩点,转入第三步。
③重新构图。令每条点v的入边w的值都减去in[v]。转入第一步。

不固定根
作法是,新设置一个人工点,向每一个顶点连一条边(称为"另类边"),权值至少比原图所有边之和还大1。
然后,以改人工点为root,求一次最小树形图。并在过程中记录使用过的边(即每次找出的最小入边)。
如果使用的 "另类边" 的次数大于1,就是impossible.否则可以找出这条边,找出那个city即可。
因为要找最小的城市,所以,我们添加边的时候,按照城市依次添加边root-->城市i就好了。
*/


uva 11183 teen girl squad

#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 1052
#define INF 99999999
int n,m;
int map[maxn][maxn];
bool flag[maxn];
int pre[maxn];
void dfs(int x)
{
    flag[x]=true;
    for(int i=1; i<=n; i++)
        if(!flag[i]&&map[x][i]!=INF)
            dfs(i);
}
bool check()//检查联通
{
    memset(flag,0,sizeof(flag));
    dfs(1);
    for(int i=1; i<=n; i++)
        if(!flag[i])return false;
    return true;
}
int solve()
{
    memset(flag,0,sizeof(flag));//flag是true的点是被去掉的点
    int i,j,k;
    int ans=0;
    while(1)
    {
        for(i=2; i<=n; i++)
        if(!flag[i])
            {
                pre[i]=i;
                map[i][i]=INF;
                for(j=1; j<=n; j++)
                if(!flag[j])
                    {
                        if(map[pre[i]][i]>map[j][i])
                            pre[i]=j;
                    }
            }
        for(i=2; i<=n; i++)
        if(!flag[i])
            {
                bool mark[maxn];
                memset(mark,0,sizeof(mark));
                for(j=i; j!=1&&!mark[j]; mark[j]=true,j=pre[j]);
                //寻找环,返回在环内的一点(注意从i出发能找到换不代表n在环内)
                if(j==1)continue;
                i=j;
                ans+=map[pre[i]][i];
                for(j=pre[i]; j!=i; j=pre[j])
                {
                    ans+=map[pre[j]][j];
                    flag[j]=true;
                }
                for(j=1; j<=n; j++)if(!flag[j]&&map[j][i]!=INF)
                        map[j][i]-=map[pre[i]][i];
                for(j=pre[i]; j!=i; j=pre[j])
                {
                    for(k=1; k<=n; k++)if(!flag[k]&&map[j][k]!=INF)
                            map[i][k]=min(map[i][k],map[j][k]);
                    for(k=1; k<=n; k++)if(!flag[k]&&map[k][j]!=INF)
                            map[k][i]=min(map[k][i],map[k][j]-map[pre[j]][j]);
                }
                break;
            }
        if(i>n)//说明没有环了。
        {
            for(j=2; j<=n; j++)if(!flag[j])
                    ans+=map[pre[j]][j];
            return ans;
        }
    }
}
int main()
{
    int T, cas = 1;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d", &n ,&m);
        if(n == 0 && m == 0)  break;

        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                map[i][j]=INF;

        int x, y, z;
        for(int i = 1; i <= m; i++)
        {
            scanf("%d%d%d",&x, &y, &z);
            x++;
            y++;
            if(x == y) continue;//消除自环
            map[x][y] = min(map[x][y], z);
        }

        if(!check())
        {
            printf("Case #%d: Possums!\n", cas++);
        }
        else
        {
            printf("Case #%d: %d\n", cas++, solve());
        }
    }
    return 0;
}

/*
算法核心需要三个步骤:
①找出每个点最小的入边in[v],如果有除根节点之外的点没有入边,显然无解。
②累加出上面所有点的最小入边的值。
找出图中的环,如果没有环,终止,返回解;否则,缩点,转入第三步。
③重新构图。令每条点v的入边w的值都减去in[v]。转入第一步。

不固定根
作法是,新设置一个人工点,向每一个顶点连一条边(称为"另类边"),权值至少比原图所有边之和还大1。
然后,以改人工点为root,求一次最小树形图。并在过程中记录使用过的边(即每次找出的最小入边)。
如果使用的 "另类边" 的次数大于1,就是impossible.否则可以找出这条边,找出那个city即可。
因为要找最小的城市,所以,我们添加边的时候,按照城市依次添加边root-->城市i就好了。
*/

hdu 2121  ice_cream's world ll


弄个虚拟根,代码不贴了,用的别人的模板






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值