poj 3164 Command Network
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 120
#define INF 99999999999.0
int n,m;
struct node
{
double x,y;
} a[maxn];
inline double get_dis(node a,node b)
{
return sqrt((a.x - b.x)*(a.x - b.x)+(a.y - b.y)*(a.y - b.y));
}
double map[maxn][maxn];
bool flag[maxn];
int pre[maxn];
void dfs(int x)
{
flag[x]=true;
for(int i=1; i<=n; i++)
if(!flag[i]&&map[x][i]!=INF)
dfs(i);
}
bool check()//检查联通
{
memset(flag,0,sizeof(flag));
dfs(1);
for(int i=1; i<=n; i++)
if(!flag[i])return false;
return true;
}
double solve()
{
memset(flag,0,sizeof(flag));//flag是true的点是被去掉的点
int i,j,k;
double ans=0;
while(1)
{
for(i=2; i<=n; i++)
if(!flag[i])
{
pre[i]=i;
map[i][i]=INF;
for(j=1; j<=n; j++)
if(!flag[j])
{
if(map[pre[i]][i]>map[j][i])
pre[i]=j;
}
}
for(i=2; i<=n; i++)
if(!flag[i])
{
bool mark[maxn];
memset(mark,0,sizeof(mark));
for(j=i; j!=1&&!mark[j]; mark[j]=true,j=pre[j]);
//寻找环,返回在环内的一点(注意从i出发能找到换不代表n在环内)
if(j==1)continue;
i=j;
ans+=map[pre[i]][i];
for(j=pre[i]; j!=i; j=pre[j])
{
ans+=map[pre[j]][j];
flag[j]=true;
}
for(j=1; j<=n; j++)if(!flag[j]&&map[j][i]!=INF)
map[j][i]-=map[pre[i]][i];
for(j=pre[i]; j!=i; j=pre[j])
{
for(k=1; k<=n; k++)if(!flag[k]&&map[j][k]!=INF)
map[i][k]=min(map[i][k],map[j][k]);
for(k=1; k<=n; k++)if(!flag[k]&&map[k][j]!=INF)
map[k][i]=min(map[k][i],map[k][j]-map[pre[j]][j]);
}
break;
}
if(i>n)//说明没有环了。
{
for(j=2; j<=n; j++)if(!flag[j])
ans+=map[pre[j]][j];
return ans;
}
}
}
int main()
{
int i,j,x,y;
while(scanf("%d%d",&n,&m)!=-1)
{
for(i=1; i<=n; i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
map[i][j]=INF;
for(i=1; i<=m; i++)
{
scanf("%d%d",&x,&y);
if(x==y)continue;//消除自环
map[x][y]=get_dis(a[x],a[y]);
}
if(!check())//检查有向图是否联通
{
printf("poor snoopy\n");
}
else
{
printf("%.2lf\n",solve());
}
}
}
/*
算法核心需要三个步骤:
①找出每个点最小的入边in[v],如果有除根节点之外的点没有入边,显然无解。
②累加出上面所有点的最小入边的值。
找出图中的环,如果没有环,终止,返回解;否则,缩点,转入第三步。
③重新构图。令每条点v的入边w的值都减去in[v]。转入第一步。
不固定根
作法是,新设置一个人工点,向每一个顶点连一条边(称为"另类边"),权值至少比原图所有边之和还大1。
然后,以改人工点为root,求一次最小树形图。并在过程中记录使用过的边(即每次找出的最小入边)。
如果使用的 "另类边" 的次数大于1,就是impossible.否则可以找出这条边,找出那个city即可。
因为要找最小的城市,所以,我们添加边的时候,按照城市依次添加边root-->城市i就好了。
*/
2248. Channel Design
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 102
#define INF 99999999
int n,m;
int map[maxn][maxn];
bool flag[maxn];
int pre[maxn];
void dfs(int x)
{
flag[x]=true;
for(int i=1; i<=n; i++)
if(!flag[i]&&map[x][i]!=INF)
dfs(i);
}
bool check()//检查联通
{
memset(flag,0,sizeof(flag));
dfs(1);
for(int i=1; i<=n; i++)
if(!flag[i])return false;
return true;
}
int solve()
{
memset(flag,0,sizeof(flag));//flag是true的点是被去掉的点
int i,j,k;
int ans=0;
while(1)
{
for(i=2; i<=n; i++)
if(!flag[i])
{
pre[i]=i;
map[i][i]=INF;
for(j=1; j<=n; j++)
if(!flag[j])
{
if(map[pre[i]][i]>map[j][i])
pre[i]=j;
}
}
for(i=2; i<=n; i++)
if(!flag[i])
{
bool mark[maxn];
memset(mark,0,sizeof(mark));
for(j=i; j!=1&&!mark[j]; mark[j]=true,j=pre[j]);
//寻找环,返回在环内的一点(注意从i出发能找到换不代表n在环内)
if(j==1)continue;
i=j;
ans+=map[pre[i]][i];
for(j=pre[i]; j!=i; j=pre[j])
{
ans+=map[pre[j]][j];
flag[j]=true;
}
for(j=1; j<=n; j++)if(!flag[j]&&map[j][i]!=INF)
map[j][i]-=map[pre[i]][i];
for(j=pre[i]; j!=i; j=pre[j])
{
for(k=1; k<=n; k++)if(!flag[k]&&map[j][k]!=INF)
map[i][k]=min(map[i][k],map[j][k]);
for(k=1; k<=n; k++)if(!flag[k]&&map[k][j]!=INF)
map[k][i]=min(map[k][i],map[k][j]-map[pre[j]][j]);
}
break;
}
if(i>n)//说明没有环了。
{
for(j=2; j<=n; j++)if(!flag[j])
ans+=map[pre[j]][j];
return ans;
}
}
}
int main()
{
while(scanf("%d%d", &n ,&m) != EOF)
{
if(n == 0 && m == 0) break;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
map[i][j]=INF;
int x, y, z;
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d",&x, &y, &z);
if(x == y) continue;//消除自环
map[x][y] = min(map[x][y], z);
}
if(!check())
{
printf("impossible\n");
}
else
{
printf("%d\n", solve());
}
}
return 0;
}
/*
算法核心需要三个步骤:
①找出每个点最小的入边in[v],如果有除根节点之外的点没有入边,显然无解。
②累加出上面所有点的最小入边的值。
找出图中的环,如果没有环,终止,返回解;否则,缩点,转入第三步。
③重新构图。令每条点v的入边w的值都减去in[v]。转入第一步。
不固定根
作法是,新设置一个人工点,向每一个顶点连一条边(称为"另类边"),权值至少比原图所有边之和还大1。
然后,以改人工点为root,求一次最小树形图。并在过程中记录使用过的边(即每次找出的最小入边)。
如果使用的 "另类边" 的次数大于1,就是impossible.否则可以找出这条边,找出那个city即可。
因为要找最小的城市,所以,我们添加边的时候,按照城市依次添加边root-->城市i就好了。
*/
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 1052
#define INF 99999999
int n,m;
int map[maxn][maxn];
bool flag[maxn];
int pre[maxn];
void dfs(int x)
{
flag[x]=true;
for(int i=1; i<=n; i++)
if(!flag[i]&&map[x][i]!=INF)
dfs(i);
}
bool check()//检查联通
{
memset(flag,0,sizeof(flag));
dfs(1);
for(int i=1; i<=n; i++)
if(!flag[i])return false;
return true;
}
int solve()
{
memset(flag,0,sizeof(flag));//flag是true的点是被去掉的点
int i,j,k;
int ans=0;
while(1)
{
for(i=2; i<=n; i++)
if(!flag[i])
{
pre[i]=i;
map[i][i]=INF;
for(j=1; j<=n; j++)
if(!flag[j])
{
if(map[pre[i]][i]>map[j][i])
pre[i]=j;
}
}
for(i=2; i<=n; i++)
if(!flag[i])
{
bool mark[maxn];
memset(mark,0,sizeof(mark));
for(j=i; j!=1&&!mark[j]; mark[j]=true,j=pre[j]);
//寻找环,返回在环内的一点(注意从i出发能找到换不代表n在环内)
if(j==1)continue;
i=j;
ans+=map[pre[i]][i];
for(j=pre[i]; j!=i; j=pre[j])
{
ans+=map[pre[j]][j];
flag[j]=true;
}
for(j=1; j<=n; j++)if(!flag[j]&&map[j][i]!=INF)
map[j][i]-=map[pre[i]][i];
for(j=pre[i]; j!=i; j=pre[j])
{
for(k=1; k<=n; k++)if(!flag[k]&&map[j][k]!=INF)
map[i][k]=min(map[i][k],map[j][k]);
for(k=1; k<=n; k++)if(!flag[k]&&map[k][j]!=INF)
map[k][i]=min(map[k][i],map[k][j]-map[pre[j]][j]);
}
break;
}
if(i>n)//说明没有环了。
{
for(j=2; j<=n; j++)if(!flag[j])
ans+=map[pre[j]][j];
return ans;
}
}
}
int main()
{
int T, cas = 1;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n ,&m);
if(n == 0 && m == 0) break;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
map[i][j]=INF;
int x, y, z;
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d",&x, &y, &z);
x++;
y++;
if(x == y) continue;//消除自环
map[x][y] = min(map[x][y], z);
}
if(!check())
{
printf("Case #%d: Possums!\n", cas++);
}
else
{
printf("Case #%d: %d\n", cas++, solve());
}
}
return 0;
}
/*
算法核心需要三个步骤:
①找出每个点最小的入边in[v],如果有除根节点之外的点没有入边,显然无解。
②累加出上面所有点的最小入边的值。
找出图中的环,如果没有环,终止,返回解;否则,缩点,转入第三步。
③重新构图。令每条点v的入边w的值都减去in[v]。转入第一步。
不固定根
作法是,新设置一个人工点,向每一个顶点连一条边(称为"另类边"),权值至少比原图所有边之和还大1。
然后,以改人工点为root,求一次最小树形图。并在过程中记录使用过的边(即每次找出的最小入边)。
如果使用的 "另类边" 的次数大于1,就是impossible.否则可以找出这条边,找出那个city即可。
因为要找最小的城市,所以,我们添加边的时候,按照城市依次添加边root-->城市i就好了。
*/
hdu 2121 ice_cream's world ll
弄个虚拟根,代码不贴了,用的别人的模板