【BZOJ2565】最长双回文串 (Manacher算法)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hqddm1253679098/article/details/79974652

题目:

BZOJ2565

分析:

首先看到回文串,肯定能想到Manacher算法。下文中字符串s是输入的字符串str在Manacher算法中添加了字符‘#’后的字符串 (构造方式如下)

string s = "#";
for (int i = 0; i < str.size(); i++)
{
    s += str[i];
    s += '#';
}

如果用maxli表示以第i个字符结尾的最长回文串的长度,maxri表示以第i个字符开头的最长回文串的长度,那么题目中要求的可以转化为在s中找一个位置i,满足si是’#’且maxli+maxri最大。在原串str中,它是两个长度分别为maxli12maxri12的回文串 (要减掉额外加进去的’#’字符) 。因此,算出maxlmaxr后,就可以枚举所有’#’字符来得到答案。
怎么算maxlmaxr呢?对于一个位置pos,显然以它结尾的最长回文串的中心是一个最小的i满足posi<=pi (pi是Manacher中求出的以i为中心的回文串的“半径”),此时maxrpos=(posi)2+1。那么带着单调队列从左往右扫一遍就能算出maxr,详见代码。同理,从右往左扫一遍可以算出maxl

代码:

我WA一下午,只因为局部变量没初始化……

#include <iostream>
#include <string>
using namespace std;

namespace zyt
{
    const int M = 1e5 * 2 + 10;
    int p[M];
    void manacher(const string &str)
    {
        string s = "#";
        int id = 0, right = 0;
        for (int i = 0; i < str.size(); i++)
        {
            s += str[i];
            s += '#';
        }
        for (int i = 0; i < s.size(); i++)
        {
            if (i < right)
                p[i] = min(p[id * 2 - i], right - i);
            else p[i] = 1;
            while (i - p[i] >= 0 && i + p[i] < s.size() && s[i - p[i]] == s[i + p[i]])
                p[i]++;
            if (i + p[i] > right)
                right = i + p[i], id = i;
        }
    }
    inline int abs(const int x)
    {
        return x >= 0 ? x : -x;
    }
    void mk_max(int *maxx, const int len, const bool flag)
    {
        static int q[M];
        int h = 0, t = 0;
        for (int i = 0; i < len; i++)
        {
            int pos = flag ? i : len - i - 1;
            q[t++] = pos;
            while (h < t && abs(pos - q[h]) >= p[q[h]])
                h++;
            maxx[pos] = abs(pos - q[h]) * 2 + 1;
        }
    }
    void work()
    {
        string s;
        static int maxl[M], maxr[M];
        ios::sync_with_stdio(false);
        cin >> s;
        manacher(s);
        mk_max(maxl, s.size() * 2 + 1, true);
        mk_max(maxr, s.size() * 2 + 1, false);
        int ans = 0;
        for (int i = 0; i < s.size() * 2 + 1; i += 2)
            if (maxl[i] > 1 && maxr[i] > 1)
                ans = max(ans, (maxl[i] - 1) / 2 + (maxr[i] - 1) / 2);
        cout << ans << endl;
    }
}
int main()
{
    zyt::work();
    return 0;
}
阅读更多
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页