- 博客(21)
- 资源 (6)
- 收藏
- 关注
原创 数学公式识别工具mathpix的安装和使用
一、简介Mathpix可以将图片、PDF 文档、网页中,甚至是手写的数学公式直接转换成LaTeX 格式,贴入 Markdown,Mathtype,WinEdt 或 Word 自带的公式编辑器中反向转换即可。 Mathpix 是一个在线服务,需要联网使用。二、下载安装点击进入Mathpix 官网(https://mathpix.com),按操作系统选择下载,点击安装即可。安装好之后,右下角出现图标,后台已运行,不需要点击。三、界面按快捷键Ctrl + Alt + M(Windo...
2022-02-22 11:05:22 52570 1
原创 CHP3-医学图像的运算和变换
一、医学图像的算数和逻辑运算算法运算(代数运算):两幅图像或多幅输入图像之间进行点对点的加、减、乘、除运算得到输出图像的过程。若将输入图像记为A(x,y)和B(x,y),输出图像为C(x,y),则有如下四种形式:影像的代数运算在医学影像处理中的应用主要有加法运算和减法运算。加法运算:两幅图像的像素对应相加,常被用于消除图像中的白噪声。主要应用:Ø图像添加噪声Ø对同一场景的多幅图像求平均,降低加性噪声Ø一幅图像叠加到另一幅图像,达到二次曝光效果减法运算:两幅图像
2021-03-14 19:37:03 2458
原创 CHP2-医学影像处理基础-案例二直方图
一、数字图像的基本概念图像数字化是将一幅图像转化成计算机能处理的形式——数字图像的过程。包含采样和量化两个过程。 采样:图像空间离散化的过程,即将空间上连续的图像变换成离散点的操作。量化:把采样所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。图像量化过程是图像灰度幅值的离散化过程,即将像素灰度转换成离散的整数值的过程。 数字图像的数值描述:如何用一个数值方式来表示一幅图像。矩阵是二维结构的数据,因此可以用一个整数矩阵来表示一幅数字图像。矩阵是按照行列的顺...
2021-03-04 21:46:43 1371 1
原创 CHP1-医学影像处理概述-案例一DICOM格式读取
一、医学影像研究领域2019年1月上海交大发布《人工智能医疗白皮书》 ——全国19个省市已发布人工智能规划,AI医学影像成中国人工智能医疗最成熟领域。人工智能在医疗领域应用情况主要包括:医学影像、辅助诊断、药物研发、健康管理、疾病预测在内的五大应用领域。国外以AI药物研发为主,中国则借助医疗影像大数据及图像识别技术的发展优势,以AI医学影像为主。1、医学成像系统(medical imaging system)是指图像形成的过程,包括成像机理、成像设备、成像系统的分析等问题。 2、医学影.
2021-03-04 21:28:48 1318 1
原创 实验七:散点图和折线图绘制
一、基本概念1、散点图:散点图是指在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。2、折线图:折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。二、代码编写1、散点图案例import matplotlib.pyplot as pltimport numpy as np# 设置中文黑体为默认字
2021-01-04 13:11:43 4078 3
原创 Dice损失函数基础知识及代码实现
在图像分割任务中,经常用到Dice损失,一起来简单理解一下定义和代码实现。1. Dice损失的定义Dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度(值得范围为[0,1]),公式为:其中,表示集合X和Y的交集,和表示其元素个数,对于分割任务而言,和分别表示分割的Ground True和Predict mask。由于Dice损失和Dice系数的关系是:DiceLoss = 1 - DiceCoefficient,由此得到Dice Loss的公式为:2. keras代
2020-12-31 22:41:42 13205 1
原创 实验六:泰坦尼克生存预测之缺失值处理
一、任务描述背景故事:泰坦尼克号(RMS Titanic),又译作铁达尼号,是英国白星航运公司下辖的一艘奥林匹克级游轮,排水量46000吨,于1909年3月31日在北爱尔兰贝尔法斯特港的哈兰德与沃尔夫造船厂动工建造,1911年5月31日下水,1912年4月2日完工试航。泰坦尼克号是当时世界上体积最庞大、内部设施最豪华的客运轮船,有“永不沉没”的美誉 。然而不幸的是,在它的处女航中,泰坦尼克号便遭厄运——它从英国南安普敦出发,途经法国瑟堡-奥克特维尔以及爱尔兰科夫(Cobh),驶向美国纽约。1912年
2020-12-08 15:10:51 3562 2
原创 实验五:心脏病分类预测
一、问题描述二、数据集分析数据集地址:https://www.kaggle.com/ronitf/heart-disease-uciage 年龄sex 性别 1=male,0=femalecp 胸痛类型(4种) 值1:典型心绞痛,值2:非典型心绞痛,值3:非心绞痛,值4:无症状trestbps 静息血压chol 血清胆固醇fbs 空腹血糖 >120mg/dl ,1=true; 0=falserestecg 静息心电图(值0,1,2)thalach 达到的最大心率exan..
2020-11-21 21:22:01 5357 1
原创 实验四:基于随机森林的宫颈癌预测
Imputer类:该类在sklearn.preprocessing库中,用于处理丢失的数据,其格式为:imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)参数意义:1.missing_values:缺失值的占位符,所有出现的missing_values都将被估算,可以给它一个整数或者NaN来查找缺失值2.strategy:插补策略,采用“mean”,则使用沿轴的平均值替换缺失值,还可以用“median..
2020-11-16 15:49:20 5181 4
原创 U-NET相关网络
U-NET相关网络:1.U-Net( Ronneberger 等, 2015) : 对称的编解码结构, 内部的跳跃拼接补充了下采样过程中损失的高分辨率特征, 同时改善训练中的梯度消失问题。该结构在医学图像分割领域广泛应用。Ronneberger O, Fischer P and Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation / /Proceedings of the 18th Internati
2020-11-06 11:03:45 1006
原创 实验三:乳腺癌良恶性预测
一、问题描述利用机器学习算法实现乳腺癌数据集的二分类问题,良恶性乳腺癌肿瘤预测。二、数据集分析乳腺癌数据集下载地址为:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/ 乳腺癌数据集中一共有699个样本,共11列数据,每个样本有10个特征和1个对应的标签 包含16个缺失值,用”?“标出Sample code number 索引ID Clump Thickness
2020-10-19 16:47:32 14113 6
原创 实验二:糖尿病预测
一、问题描述利用机器学习算法实现糖尿病数据集的二分类问题。二、数据集分析糖尿病数据集中一共有768个样本,每个样本有8个特征和1个对应的标签Pregnancies 怀孕次数 Glucose 葡萄糖测试值 BloodPressure 血压 SkinThickness 皮肤厚度 Insulin 胰岛素 BMI 身体质量指数 DiabetesPedigreeFunction 糖尿病遗传函数 Age 年龄
2020-10-10 22:08:20 22746 19
原创 实验一:鸢尾花数据集分类
实验一:鸢尾花数据集分类一、问题描述二、数据集分析Iris 鸢尾花数据集内包含 3 种类别,分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。 数据集共 150 条记录,每类各 50 个数据,每条记录有花萼长度、花萼宽度、花瓣长度、花瓣宽度4项特征,通过这4个特征预测鸢尾花卉属于哪一品种。 iris数据集包含在sklearn库当中,具体在sklearn\datasets\data文件夹下,文件名为iris.c.
2020-10-04 11:58:32 73247 9
转载 正则化(regularization)
正则化(regularization)在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。大条件数意味着舍入误差或其它误差会严重地影响问题的结果。反问题有两种形式。最普遍的形式是已知系统和输出求输入,另一种系统未知的情况通常也被视为反问题。许多反问题很难被解决,但是其他反问题却很容易得到答案。显然,易于解决的问题不会比很难解决的问题更
2014-03-04 10:35:11 3169
转载 Computer Vision Resources
Computer Vision ResourcesSoftwaresTopicResourcesReferencesFeature ExtractionSIFT [1] [Demo program][SIFT Library] [VLFeat]PCA-SIFT [2] [Project]
2014-01-25 12:03:30 375
转载 凸优化问题中的Bregman迭代算法
本文来自:http://blog.csdn.net/celerychen2009/article/details/9058315对于搞图像处理的人而言,不懂变分法,基本上,就没法读懂图像处理的一些经典文献。当然,这已经是10年之前的事情了。 现在,如果不懂得Bregman迭代算法,L1范数重建。也就没法读懂最近几年以来发表的图像处理的前沿论文了。国内的参考文献,基本
2013-10-21 17:30:18 715
转载 正则化(regularization)
正则化(regularization)在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。大条件数意味着舍入误差或其它误差会严重地影响问题的结果。反问题有两种形式。最普遍的形式是已知系统和输出求输入,另一种系统未知的情况通常也被视为反问题。许多反问题很难被解决,但是其他反问题却很容易得到答案。显然,易于解决的问题不会比很难解决的问题更
2013-10-21 17:15:30 514
转载 稀疏表示step by step
声明:本人属于绝对的新手,刚刚接触“稀疏表示”这个领域。之所以写下以下的若干个连载,是鼓励自己不要急功近利,而要步步为赢!所以下文肯定有所纰漏,敬请指出,我们共同进步!踏入“稀疏表达”(Sparse Representation)这个领域,纯属偶然中的必然。之前一直在研究压缩感知(Compressed Sensing)中的重构问题。照常理来讲,首先会找一维的稀疏信号(如下图)来
2013-10-10 15:57:38 449
转载 图像去模糊之初探--Single Image Motion Deblurring
曾经很长一段时间, 对图像去模糊都有一种偏见, 认为这是一个灌水的领域, 没有什么实用价值,要到这样的文章,不管是多高的档次, 直接pass。 最近在调研最近几年的关于Computational Photography的一些研究热点时, 发现图像去模糊这个领域非常活跃, 一些效果图还是蛮有意思的。 于是大概浏览了其中的几篇文章, 慢慢地我的这种偏见也消失了。 当数码消费电子日益普及的时候, 这项技
2013-09-25 11:18:27 497
转载 图像处理与计算机视觉 基础,经典以及最近发展
************************************************************************************************************************************************************************************ 在这里,我
2013-09-25 11:09:19 524
网络综合布线系统与施工技术
2008-03-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人