NYOJ 214 单调递增子序列(二)

http://acm.nyist.net/JudgeOnline/problem.php?pid=214

这是一个很好的题目。题目的算法还是比较容易看出来的,就是求最长上升子序列的长度。不过这一题的数据规模最大可以达到40000,经典的O(n^2)的动态规划算法明显会超时。我们需要寻找更好的方法来解决是最长上升子序列问题。

先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。

现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足

(1)x < y < i (2)A[x] < A[y] < A[i] (3)F[x] = F[y]

此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?

很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。

再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{A[i]} (F[i] = k)。

注意到D[]的两个特点:

(1) D[k]的值是在整个计算过程中是单调不上升的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。

利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]与D[len]。若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。最后,len即为所要求的最长上升子序列的长度。

在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。

#include<stdio.h>
int a[100005];
int dp[100005];
int binarysearth(int x,int len)
{
	int left=1,right,mid;
	right=len;
	mid=(left+right)/2;
	while(left<=right)
	{
		if(x>dp[mid])
	{
		left=mid+1;
	}
		else
			if(x<dp[mid])
				right=mid-1;
			else
				return mid;
		mid=(left+right)/2;
	}
	return left;
}
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		int i,j,len;
		for(i=0;i<n;i++)
		{
			scanf("%d",&a[i]);
		}
		len=1;
		dp[1]=a[0];
		for(i=1;i<n;i++)
		{
			j=binarysearth(a[i],len);
			dp[j]=a[i];
			if(j>len)
			   len=j;
		}
		printf("%d\n",len);

	}
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值