- 博客(131)
- 收藏
- 关注
转载 15-Factor Agents:生产级智能体工程完整框架(扩展版)
通过系统性地思考这十五个要点,您的团队将能更有信心地在 安全、透明、低成本、低延迟 的前提下,释放大型语言模型的真正商业价值,构建出不负“智能”之名的生产级应用。当智能体遇到低置信度的决策、需要审批的敏感操作、或无法处理的异常时,它不应“猜”,而应被设计成能自动“求助”。将智能体的执行状态(如当前的调用栈、重试次数)与业务对象的状态(如订单信息、用户信息)存储在同一个持久化介质中(如数据库的同一张表或同一个文档)。这使得模型能够自我诊断问题、智能重试、或向用户输出一个可理解的、有帮助的错误提示。
2026-01-12 08:23:43
5
转载 传统软件公司的 AI 智能化转型之路
大家都知道,我的朋友圈几乎都是AI内容,的确也花了不少时间做公司的AI转型。AI 智能化转型,是让软件系统具备理解业务、做出判断、执行行动并持续优化的能力。而 AI 智能化转型,本质上不是一次技术升级,而是一次 公司能力模型的重写。AI 的出现,并不是“让软件更好卖”,而是 改变了客户对软件的根本期待。很多管理层低估了 AI 的冲击,因为他们只看到了“提效”。未来五年,软件公司只有两种:能交付业务结果的,和被替代的。在这一阶段,软件不再只是系统,而是 岗位的数字化映射。
2026-01-09 07:23:00
12
转载 适用于传统软件公司,CEO AI 转型 10 条铁律
AI 转型不是追赶趋势,而是提前适应一个必然到来的世界。对 CEO 而言,最大的风险不是做错,而是不敢让 AI 真正改变公司。CEO 必须明确: 我们要重写的是“如何交付价值”,而不是“如何堆叠功能”。那么在组织中,AI 永远只是“创新项目”,而不是“核心战略”。如果答案是否定的,那么这不是战略转型,而是技术装饰。AI 的商业化,必须向“能力 / 结果”靠拢。,不讲技术细节,只讲 不可违背的决策原则。安全的 AI,往往也是最没有价值的 AI。AI 转型的终点,是更少的人、更高的确定性。
2026-01-07 07:43:04
5
转载 在Anthropic公司内部,AI是如何转移工作的?
这背后的原因是,AI使得工程师能够进行更彻底的测试和探索,或者去解决那些过去因为太棘手而会直接放弃的难题。还有一些人计划 进一步深化专业技能 ,他们认识到,能够对复杂的AI生成工作进行有意义的审查和验证,本身将成为一种稀缺且宝贵的专业能力。这意味着,虽然人与人之间的互动总量可能减少,但留存下来的互动往往是针对那些超出AI能力范围的、更复杂、更具战略性或需要深度背景知识的问题。Anthropic的内部研究清晰地表明,AI对工作的影响是复杂且充满细微差别的,远非“替代”或“提效”这么简单的标签可以概括。
2026-01-05 07:44:02
6
转载 组织管理变革:人机共生时代的“Token经济学”
我们需要思考的不再是“人是否在努力”,而是“我们输入的 Token 是否产出了经过校验的业务价值”。在人与 Agent 共存的未来,唯有建立起这一套全新的经济模型,组织才能在 AI 时代的洪流中,实现效能的指数级飞跃。在传统的组织中,评价工作成果的是经理,这种评价不可避免地包含了主观偏见、办公室政治和滞后性。投入的 Token 越多,代表 Agent 正在处理的任务越具挑战性,产出的潜在价值也越高。但在“人机共生”的组织中,权力逻辑发生了逆转: 人的工作成果度量是由 Agent 决定的。
2026-01-01 11:10:43
17
转载 别了,传统的2025!您好,AI的2026!
个体,有批员工完全AI化的工作方式,让我看到转型的希望,“不许和AI抢写代码”“不需要和AI抢写测试用例”“否则就走人”,成为我转型路上最狠心的话语。我们为2026年储备好了足够的能量,想火力全开,打造“人+AI”伙伴共生型组织,打造更多的超级个个体及业务合伙人,借助AI,我们一定可以突破边界打开更多的业务想象力。但AI也是放大器,我们也要切忌,一定不要让他放大我们的情绪,放大我们的Ego,放大我们的欲念!还是要坚守本分和正直,让自己的心安稳,开心自在的做点有价值的事情,让AI的焦虑从你我身边去除!
2025-12-31 18:21:17
12
转载 Google关于AI Agent2026年的趋势预测
锚定在企业的内部数据(如购买记录和物流信息)中,它们能提供真正的一对一体验,无需客户重复解释背景信息。:随着技术更迭,专业技能的“半衰期”已缩短至 4 年(技术领域仅为 2 年),组织必须投资于人的转型。不再是被动等待投诉的聊天机器人,而是能主动监控系统触发因素,利用实时数据在客户发现问题前将其解决。,通过指挥各种专门的机器人协同工作,从而实现前所未有的生产规模和精度。,利用直觉和经验引导代理进行威胁狩猎,并专注于长期的防御架构设计。在这个工厂里,员工不是消失了,而是从流水线工人变成了监控全局的。
2025-12-31 07:40:38
87
转载 重塑组织基因:AI 原生组织的九大进化法则
真正的 AI 原生组织,需要从骨子里拥抱 AI,将 AI 思维和能力融入组织的 DNA 中。组织转型背后是人的转型,只有当每个成员都具备了 AI 思维和能力,组织才能真正实现 AI 化,释放出 AI 的巨大潜力。我们基于对行业前沿的观察和实践总结,归纳了以下九大判断准则,旨在为企业提供一套清晰的评估框架,帮助企业识别自身在 AI 转型道路上的位置,并找到进化的方向。例如,利用 AI 实现供应链的智能预测和调度,利用 AI 实现生产过程的自动化控制和质量检测,利用 AI 实现客户服务的智能化分流和处理。
2025-12-29 08:28:17
18
转载 Serverless RL,一种更快、更便宜、更灵活的强化学习训练方法
传统的RL开发在调整逻辑后重启训练和推理往往需要数分钟来重新初始化,而 无服务器RL(Serverless RL)将训练与推理分别运行在独立的常驻实例上 ,使 rollout 逻辑或奖励函数的修改能以秒级速度应用,显著缩短了“运行-调试-调优-重训练”的迭代周期。:BroRL等新技术改变了过去仅通过增加训练步数来提升性能的思路,转而 在每个更新步骤中启动数百个并发探索路径(Rollout扩展) ,这种“由宽及深”的方法能有效平滑噪声,突破传统方法的性能平台。实现真正的“按需缩放”与零成本闲置。
2025-12-27 08:05:36
29
转载 【完结篇】DevOps Agent 从0到1搞强化学习训练实战
VERL(Value-Equivalent Reinforcement Learning)是 Agent Lightning 使用的强化学习算法框架。如何用 Agent Lightning 训练一个专业的 DevOps Architect Agent?GRPO 适合我们的 DevOps 任务(长文本、多步骤)引言:训练一个"会思考"的 DevOps Agent。引言:训练一个"会思考"的 DevOps Agent。:从自动化、可靠性、安全性等维度评估自己的输出。四、VERL 配置详解:训练的核心关注点。
2025-12-26 08:23:46
21
转载 如何设计一个可训练的 DevOps Agent?奖励函数与数据集设计实战
今天,我们以 DevOps Architect Agent 为例,深入解析如何设计一套完整的 RL 训练方案。在开始设计奖励函数之前,我们需要先定义 Agent 的"人格"和"工作方式"。→ 对应 Agent 的 "CI/CD Development" 触发场景。奖励函数是 RL 训练的"指挥棒",它决定了 Agent 学习的方向。→ 对应 "Infrastructure as Code" 触发场景。AI的本质,它不是工具,而是生产力!→ 对应 "Container Orchestration" 职责。
2025-12-25 08:04:19
13
转载 DevOps Agent 评估与训练框架实践总结
本文以 DevOps Architect Agent 为例,深入对比三个主流框架在 Agent 评估和强化学习训练中的实际应用,提供可落地的实践方案。40+ 预置评估指标(G-Eval, Hallucination, Answer Relevancy 等)支持 Agent 专用指标(Task Completion, Tool Correctness)✅ 支持 W&B Serverless RL(托管 GPU)多种算法支持(VERL/GRPO, APO, SFT)
2025-12-24 08:08:44
14
转载 【实践】实现 A2A通信:让 AI Agents 互相协作
想象这样一个场景:你的交付管理 Agent 需要设计一个 CI/CD 流水线,它不需要自己精通 DevOps,只需要"问一问"团队里的 DevOps Architect Agent 就能得到专业的架构建议。也让我联想到RCA故障根因分析,我把故障上下文通过A2A协议传递给研发的Agent,研发侧进行直接代码定位,此时无需开放代码给运维,运维这等于把系统变成了一个白盒。本文将带你从零开始,实现一个完整的 A2A 协议集成,让你的 AI Agent 变成可以被其他 Agent 远程调用的"微服务"。
2025-12-23 07:28:32
33
原创 面向功能 vs 面向 Agent 开发模式差异。基于 Tars 和 DevOps Architect Agent 开发实践经验
本文基于我们在 Tars 平台开发、DevOps Architect Agent 设计改进、Agent 框架标准化等项目的实践经验,总结"面向功能开发"(Functional Development)和"面向 Agent 开发"(Agent Development)的核心差异。:定义如何使用这些功能(如 DevOps Architect Agent)Agent 不是孤立的,需要在 Agent 网络中定义清晰的协作关系。:定义功能如何与 Agent 协作(如 Integration)
2025-12-22 07:46:09
957
转载 【译】The Shadow Project Manager 影子项目经理
这篇文章,最后的发问令人深思,所以读完还是有些感叹,转译给大家。很多岗位都是“影子**”,我觉得我们都需要带着这份觉察去看AI。共勉!It's 4:47 PM on a Friday in November. I'm staring at an email that just landed in my inbox—a wall of text from a colleague, who's been wrestling with a data integration project for a fleet
2025-12-20 08:06:48
28
转载 AI的本质,它不是工具,而是生产力!Elevo如何将AI融入企业血脉?
Elevo 通过 AI 驱动的自动化,将原本需要数小时的故障响应缩短至分钟级(MTTR 优化),将原本模糊的成本浪费转化为清晰的节约数据。而“要素”是主动的,它像碳元素之于生命,通过不同的排列组合,能催生出完全不同的业务形态。在 Elevo 的逻辑里,AI 不再是外挂在业务旁边的助手,而是像电力一样,渗透进业务的每一个毛细血管,成为驱动企业运转的底层能量。在 Elevo 构建的系统中,AI 是执行的利刃,人类是握刀的手。在 Elevo 的世界里,AI 不是来抢工作的,它是来 还给人类尊严 的。
2025-12-19 08:04:45
23
转载 【译】与 Martin Fowler 的深度对话:人工智能如何重塑软件工程
他建议,理想的目标是“用一半的时间完成一半的工作”,不断缩短从构思到代码运行的时间。这就要求我们以非常小的、快速的方式进行开发,并且对生成的每一段代码都进行与初级开发人员提交的拉取请求相同的严格审查。二十多年过去了,他对敏捷运动的成功感到满意。对于功能正确但结构糟糕的 AI 生成代码而言,这种严谨的、循序渐进的方法是将非确定性过程的输出转化为可维护且高质量状态的主要机制。他提出了几个可能的原因:人们对过度使用设计模式的反感、AWS 等供应商提供的架构良好的云构建模块的兴起,以及创业文化的代际转变。
2025-12-18 08:00:55
42
转载 释放生产力!DevOps 架构师 Agent:打造自动化、高可靠、可观测的未来 IT 架构
Agent 的输出包括完整的 CI/CD 配置(如 GitHub Actions、Jenkins)、IaC 代码(Terraform、K8s Manifests)以及监控配置(Prometheus、Grafana)等,是真正的工程化产出。理论上可以设计一个超级Agent,能完成一切,但也不符合人类分工的工作习惯,该Agent的逻辑是限定了它能做什么,不能做什么,是一种安全护栏机制。事件响应:在生产系统出现高错误率时,触发告警、收集诊断信息(日志、指标、追踪),并实施即时缓解(如回滚、扩容)。
2025-12-17 08:31:06
34
转载 AI 运维的六大致命陷阱:为什么你的 LLM 落地总在“画饼”?
我们过去建设传统 MIS 系统的经验,强调 流程的刚性、数据的结构化和逻辑的确定性 ,这正在 束缚我们对 AI 价值的想象和应用。RAG 规则库的僵化: RAG 依赖的知识库或规则库往往 偏静态 ,无法适应运维环境中 快速变化的配置、拓扑和事件流 ,难以实现 动态更新。私域知识的鸿沟: 通用大模型缺乏对企业内部环境、拓扑和历史故障的理解,如果不能喂养高质量的私域语料,智能就无从谈起。跨越难度高: 这些技术栈的深度和广度,对于传统运维团队而言,跨越的技术要求 非常高 ,成为限制大规模落地的核心瓶颈。
2025-12-16 06:57:37
21
转载 Agentic 组织下的终极拷问:康威定律是否已失效?
AI 并没有废除康威定律,它只是将定律的主体从“人”的肉体沟通结构,提升到了“智能要素”的逻辑沟通结构。成功的 Agentic 组织,必须通过重塑“三人行”的角色分工和标准化 Agent 的行为与知识资产,来设计出低耦合、高内聚的 AI Native 系统。梅尔·康威在 1968 年提出的经典洞察——康威定律,在软件开发领域被奉为圭臬:“设计系统的组织(广义上的)注定会产生与该组织内部沟通结构相对应的设计。看起来,Agent 抹平了人的沟通障碍,系统架构不再受限于人的低效沟通,康威定律似乎失效了。
2025-12-15 08:05:56
15
转载 警惕:为什么“传统MIS + AI”是一条走不通的死路?
如果您的 MIS 系统在功能上没有突破性,那么一个外挂的 AI 模块,只会让您比竞争对手多了一个 通用且易被复制的功能 ,而无法转化为核心竞争力。核心观点: 真正的 AI 竞争力,必须建立在您独有的 私域知识资产 和 AI Native 的组织流程 之上,而不是建立在所有人都能获得的通用 AI 模型之上。欢迎在评论区分享您的观点!当您在旧系统上定制复杂的 AI 功能时,会发现 AI 的能力被 反向限制。AI 时代的企业,需要的不是在旧地图上加导航,而是 立即绘制一张新的 AI Native 战略地图。
2025-12-13 07:33:14
25
转载 【实践篇】我在某AI Native系统架构设计与实现上做了一点尝试:双路径架构
Agent Path 从 Service Path 获取上下文(如 Contract Docs、Issue 信息)将 Agent Path(AI 交互)与 Service Path(业务逻辑)分离,以优化成本并保持清晰的边界。: 当迭代(Iteration)状态变更时,自动同步关联问题(Issue)的状态,确保数据一致性。: 不要在 Service Path 中调用 LLM,不要在 Agent Path 中持久化。: 优先使用 Service Path,仅在需要生成内容时使用 Agent Path。
2025-12-12 06:59:04
36
转载 AI时代企业生存指南:CEO必须警惕的五大致命内因
优秀的企业必须利用 AI 驱动的 超敏捷反馈环 ,从海量用户数据中提炼出未被满足的、高价值的 稀缺需求 ,并以 Agent 或 AI Native 应用的形式 极速交付。未来的企业软件,不再是一堆独立的 App 和系统,而是以 大模型为内核 ,以 智能体(Agent)为载体 的新型操作系统。将你的企业打造为一个 AI Native 的生命体 ,以极速、高效和无限的知识提炼能力,穿越这场史无前例的时代变革。核心认知: 组织能力不再是人的简单叠加,而是 人与 Agent 组合后的整体效能。
2025-12-11 07:52:24
28
转载 颠覆传统,极致闭环:探索AI赋能下的“三人行”开发组织新模式。
降低内耗: AI充当了高效的“翻译官”和“执行者”,它将业务的“意图”迅速转化为产品的“指令”,再转化为技术的“实现”,大幅减少了角色间的摩擦和不必要的扯皮。人机交互与价值转换师:负责将业务专家的知识资产和用户需求,高效转化为AI系统可执行的产品需求指令和价值实现路径,关注AI能力边界与用户体验的融合。减少“人”的角色过多参与: 每增加一个“人”的环节,就可能增加沟通成本、理解偏差和内耗。在这个新时代,优秀的产品不再是代码堆砌的产物,而是 优质知识资产 、 精准AI指令 和 高效技术集成 的结晶。
2025-12-10 07:45:24
51
转载 我们改名啦!一次重要的升级,代表全新的开始!
我们正深入实践 Elevo 人机协同产品 ,坚信人与AI最高效的协作模式才是未来运维及其他岗位的“新范式”。这次更名,正是为了 清晰地定义我们未来的内容方向 ,让大家知道在这里能找到最前沿、最有价值的实践经验。我们诚挚邀请您继续留在这里,与我们一同探索运维智能化的边界,见证并推动 AI运维人机新范式 的构建。虽然名字变了,但我们 分享干货、探索技术前沿 的初心不变,并且会更聚焦、更专业!用AI实践,定义人机协同下的Agentic企业(Ops、开发、测试、运营等)!两大核心展开,突出 实践、落地、变革。
2025-12-09 07:58:07
21
转载 AI时代,要么Builder,要么Loser,你会怎么选?
当然,这要你 专业的素养 支撑,如果做不到,这个AI对你的价值就是为0的。如果你能将AI视为超级合伙人,以你的专业素养为引擎,你就能成为一个 超级Builder ,站在时代的浪尖,构建你想要的一切,实现 指数级增长。🌟 记住这个公式: 你是掌握蓝图的 总设计师 ,AI是为你瞬间调动资源的 超级机械臂。运用AI强大的数据处理能力,结合你对行业的深度理解,构建 只有你能产出 的、带有你鲜明个人印记的稀缺内容或解决方案。成为Builder的关键,在于你是否能用你的 专业素养 去驱动AI的 无限能力。
2025-12-08 08:02:20
14
转载 Claude Skills工具简直太爽了!动手实践写了个AI自动代码检查,让AI提升代码质量!
最近用AI写了些代码,但担心代码质量不高,所以想写个代码审查工具,所以这个工具应运而生。圈复杂度是衡量代码复杂程度的指标,通过统计控制流语句(if、for、while、switch 等)的数量来计算。,其中有个文件,他是动态生成数据库的各种内容,变成Markdown,然后推送到gitlab服务器。AI Coding的时候,我就感觉很不好,毕竟每次生成代码时间很长,重构容易出错,接下来,你用这个工具去检查代码,很快就能得到一份详细的代码质量报告。,让 AI 帮你自动发现代码问题,并提供改进建议!
2025-12-07 07:14:24
113
原创 【AI谈】Elevo,是我对AI认知与思考的具象化表达
十年创业,我越发觉得,做产品不是造工具,是养一个“伙伴”,又或者养一个“孩子”吧——你前期定方向、喂数据、陪它训练,但它最终会走出自己的路——这个事情不容易,尤其早期培养它的“性格”、“思维方式”、“世界观”等等,是一个系统性的早教工程。就是我们实践的产物,虽然它并不是因为新质生产力而诞生,但它的诞生为我们吹散了弥漫在新质生产力周边的迷雾——在当前企业协同情景中,AI在其中如何发挥作用,这个就叫“新质生产力”。的作为商业社会的头部参与者,尤其是科技领域的一线生产者,要如何打破“新质生产力”的认知屏障?
2025-09-29 07:49:15
555
原创 运维老王:创业第十年,我用Elevo找回内心翻腾的梦想
这一路跌跌撞撞走来,“大胆假设,小心求证”成为我们团队的“团魂”,最初那股干劲总在有意无意推着我们闯入无人之境,时常陷入“无经可引无典可据”的困境,但真正支撑着我们穿越周期的不是什么苦中作乐的伟光正叙事,往往都是拨得云开见月明的爽感——我们总能在最难搞的事情上找对方向大干一场,然后享受大功告成的喜悦。所谓“最好的时代也是最坏的时代”,我个人从不定义这类议题,我觉得每个人都有自己的时代风暴,很多人选择一起躲雨,也有一些人选择用自己的方式淋雨,两者各有千秋。明明是个做技术的人,却总是被琐碎的事情困住手脚。
2025-09-12 07:31:24
834
转载 什么是上下文腐烂Context Rot?
随着上下文增加,模型可能变得过于保守(只给模糊答案)或过于自信(但答案错误)。当输入给模型的上下文越来越长时,模型并不会线性提升理解和推理能力,反而可能。:如果检索的上下文过长,关键信息可能被“埋没”,导致问答性能下降。:位于上下文中间的重要信息常被忽略,模型更倾向于关注开头和结尾。:只提供与问题高度相关的信息,避免一次性塞入过多无关内容。:无关或冗余的信息会稀释真正有用的知识,导致输出错误。LLM 在处理越来越长的上下文时,性能反而下降的现象。:在更长的输入中,模型更容易忽视重要片段。
2025-09-04 07:59:44
274
转载 Palantir Ontology 技术深度解析:化繁为简,连接数据与决策的数字孪生
Ontology 不仅仅是一个数据库或数据模型,它更是一个动态的、可操作的“数字孪生”(Digital Twin),为组织机构的复杂世界提供了一个语义丰富的框架,将海量、异构的数据转化为驱动智能决策的“活”资产。它不仅仅是数据的简单可视化或集成,而是通过构建一个与现实世界平行的、可操作的数字副本,真正将数据转化为组织的神经中枢,让数据在业务的每一个环节中流动、呼吸,并最终驱动更明智、更迅速的决策。例如,一个“员工”对象可以链接到他所属的“部门”对象,一架“飞机”对象可以链接到其执行的“航班”对象。
2025-08-18 08:00:21
1958
转载 投资几百亿,为何中国toB运维软件行业商业化仍陷困局?我看到的企业3因素+外在环境4因素+行业5因素。
我们讲的服务可以细化出来,结合华为LTC流程来看,里面有大量活动在发生,不同阶段需要有不同的责任主体,并且还要考虑前后活动信息传递的有效性和准确性,从而决定了最终的服务质量。管理成熟度体现在文化/制度/流程等多个方面,华为铁三角不是简单的角色绑定,更是利益和责任的绑定,但背后是全面制度的设计支撑,更是人性的洞察。商业模式的创新才是根本,而这个根本又依赖产品和服务的创新型解决方案,效率是关键,因循守旧一定不能找到新出路,一定要看到新技术新未来,如出海、SaaS、聚焦客户群、拥抱AI等;欢迎在评论区深入探讨。
2025-08-01 11:57:08
123
转载 为什么我们不用dify或类Agentflow平台来定制AI解决方案?
这个过程不仅耗时耗力,更重要的是,例如,一个异常检测模型如果只是简单地告诉你“这里有异常”,而无法解释异常的原因和推荐的解决方案,那么它的价值将大打折扣。综上所述,虽然 Dify 在快速构建AI应用方面展现出强大潜力,但鉴于其全定制化的特点、对市场竞争格局的影响以及通用大模型在2B专家模型领域的局限性,传统的系统集成商通过 Dify 等平台,可以更容易地涉足智能运维领域,提供大模型驱动的解决方案,与我们形成直接竞争。一个能够将我们独有的专家经验融入其中,形成差异化竞争优势的解决方案,才是我们真正需要的。
2025-07-21 07:22:23
115
转载 运维必知必会AI大模型知识之(十六):什么事指令微调?指令微调数据集和CoT数据集差异
通过这种方式,模型学会理解不同类型的指令(如翻译、摘要、问答、代码生成等),并生成高质量、符合指令要求的回应。通过学习中间步骤,模型能够更好地模拟人类的思考过程,从而提高在需要推理的任务上的性能,例如数学问题、逻辑推理、代码调试等。指令微调是一种对大型语言模型(LLM)进行微调的技术,旨在提高模型遵循人类指令的能力,并使其输出更符合用户的预期。“A是B的父亲,B是C的母亲。模型会接收到成对的“指令”和“对应的理想输出”作为训练数据。“如果A是B的父亲,B是C的母亲,那么A和C是什么关系?
2025-06-12 07:32:52
191
转载 运维必知必会AI大模型知识之(十五):涌现能力,如同人的“顿悟”
大语言模型(LLM)的“涌现能力”(Emergent Abilities)是指在模型规模(例如,参数数量、训练数据量等)达到一定阈值后,模型突然展现出的、在小规模模型中不具备或表现不佳的能力。尽管存在一些质疑,但主流观点仍倾向于认为,这种能力是模型在规模达到一定程度后,其内部复杂的参数和训练数据之间相互作用的结果,使其能够从简单的统计关联中“进化”出更高级的语言理解、推理和生成能力。当模型规模足够大时,它能够处理更长的上下文、更复杂的依赖关系,并可能在内部形成一些类似于“子任务分解”或“规划”的机制。
2025-06-09 08:01:16
437
转载 运维必知必会AI大模型知识之(十四):多模态思维链提示方法
所以,水果的总数是2。它的核心目标是让大型多模态模型 (LMMs,能够处理多种模态输入的模型) 不仅仅是简单地对多模态输入进行描述或回答直接问题,而是能够针对涉及多种信息来源的复杂问题,生成一步步的、可解释的推理过程,并最终得出答案。训练能够有效执行 MM-CoT 的模型,或者设计有效的 few-shot 示例,可能需要大量高质量、带有详细推理标注的多模态数据集,而这类数据集的构建成本很高。生成的思维链为模型的决策过程提供了一定的透明度,用户可以理解模型是如何得出结论的,这对于建立信任和调试模型非常重要。
2025-06-06 07:46:21
160
转载 运维必知必会AI大模型知识之(十三):大模型可解释性
虽然这不完全是内部机制的可解释性,但它提供了一个人类可理解的推理路径,有助于我们理解模型如何得出结论(尽管这种“思考”过程也可能是在“编造”一个合理的解释)。即使模型给出了“解释”,我们也很难判断这种解释是否真正反映了模型的实际决策过程,还是仅仅是模型“编造”出来的看似合理的理由。将复杂的LLM转换为更小、更简单的模型(如决策树),这些简单模型更容易理解,同时尽可能保持原始模型的决策能力。理解大语言模型(LLM)的可解释性,首先要明白“可解释性”在AI领域的重要性,尤其是在LLM这种复杂模型中。
2025-06-05 07:56:34
189
转载 运维必知必会AI大模型知识之(十二):模型剪枝
模型剪枝 (Model Pruning)是一种模型压缩技术,旨在通过移除神经网络中冗余或不重要的参数(如权重、神经元、通道或层)来减小模型的规模和复杂度,同时尽可能保持模型的性能。总而言之,模型剪枝是一种有效的模型压缩手段,通过移除冗余参数来优化模型的效率和部署可行性。剪枝后,模型的性能通常会有所下降。虽然剪枝对大型模型尤为重要,但对超大规模的模型进行有效的剪枝和微调仍然是一个具有挑战性的研究领域。在某些情况下,剪枝可以通过减少模型冗余和过拟合的风险,来提高模型在未见过数据上的泛化能力。
2025-06-04 08:05:47
158
转载 MCP 支持的 7 大 AI 框架
您可以访问数百个现成的 MCP 工具,并将其应用于您的 AI 项目。查看以上链接中的 Composio MCP 工具类别,了解如何在支持 MCP 的 IDE(例如 Cursor、Claude 和 Windsurf)中将多个应用程序连接到您的项目。它内置了对 MCP 服务器的支持,因此您可以配置您的应用以发现可用的 MCP 工具,并将工具调用集成到应用程序流程中,从而获得更佳的效果。在此图中,我们将Agent代理系统所需的工具整合在一起,并通过 MCP 服务器进行访问,从而提供更具凝聚力的用户体验。
2025-05-31 19:14:59
154
转载 大模型驱动智能化运维靠谱么?来看看各个大模型怎么说。
企业在拥抱这项新技术时,应保持谨慎乐观的态度,从小处着手,注重人机协同,并密切关注技术的发展和风险的控制,才能使其真正成为提升运维效率和可靠性的“靠谱”工具。此外,对于新的、未曾见过的问题类型,LLM的表现可能会显著下降。虽然LLM有强大的数据处理能力,但如何保障数据的安全性、避免模型被攻击或滥用,依然是实现智能化运维的一个挑战。LLM能够更好地理解告警信息之间的语义关联,进行更智能的告警聚合,并结合上下文信息(如变更记录、拓扑关系)提供更丰富的情境,帮助运维人员快速判断告警的真实影响和优先级。
2025-05-29 07:55:16
94
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅