- 博客(11)
- 收藏
- 关注
原创 向量与线性方程组
1、只有维数相同的向量才能运算,才能比较相等2、消元法:原本的齐次/非齐次线性方程组可以写为AX=0/AX=b的矩阵方程 将方程组表示为增广矩阵(A,b),利用增广矩阵的初等行变换来代替传统的方程间的消元法 还有一套特定的矩阵的秩规则来判断方程组的解对于一定有解(即R(A)一定等于R(A,b))的齐次线性方程(当矩阵是方阵时,可以利用行列式的值代替秩来判断解) 3、求方程组的解:1、写出方程组的增广矩阵(A,b) 2、对增广矩阵进行初等行变换,化成
2022-10-05 17:32:38 4429 1
原创 线代行列式
将元素在角落处展开(中间可能会破坏形式),展开后的形式与在展开会与第一次展开有相同结果(可通过外围的两边判断展开后是否相同结果),可以得到Dn与Dn-1的关系,直到D1。5、n阶递进对称式:行列式值=a^n+(-1)^n+1*bn 此题为x^10+(-1)^11*(-1)^9*10^10。4、求余子式的值>求代数余子式与对应元素乘积的和>求行列式的值(改变所求余子式那一行)2、范德蒙德行列式:二重for循环(n>=i>j>=1)(xi-xj)相乘。3、特殊的2n行列式:行列式的值=
2022-09-27 19:50:42 2264
原创 高数下无穷级数
一、常数项级数的概念和性质(2)级数的重要性质(3)常见级数敛散性(4)判断级数是否收敛利用图中的不等式求出n与的关系,在利用前者的关系求出自然数N,所以当n大于N时,恒有不等式成立所以级数收敛二、正项级数(1)比较判别法(2)比值判别法(3)根值判别法三方法的适用范围:............
2022-05-28 09:53:47 1934
原创 多元函数微分法及其应用
一、多元函数的极限与连续(1)多元函数的二重极限1、证明函数的极限是否存在:(1) 定义证明:与一重极限相似,x之间的距离无限逼近变为点(x,y)与聚点的距离无限逼近,即当满足式子 0<<任意正数的任意点都有任意正数,则A为,点趋近(x0,y0)时的极限(可以理解为一对点值无限小,即点逼近于点,值也逼近于值,并且各个方向都这样,那么极限确实存在了)(2)设抛物线证明:由于在x,y平面内进行趋近,所以可以设y=kx,把y替代为x,算出结果来判断极限的结果如果与k有关,则极限
2022-04-23 15:40:59 6043 2
原创 空间解析几何与向量代数
一、向量基础知识1、向量a的单位向量为,注意有正负号2、方向角:向量与各坐标轴的夹角 方向余弦:方向角的余弦值,即各轴对应坐标除以模长,各轴坐标即为向量的各轴投影二、内外积与混合积1、向量积满足反交换律,计算使用三阶行列式(行列式三行的顺序不影响计算结果,顶多加个正负)三、平面及其方程1、平面方程有一般式,点法式,截距式,一般式中x,y,z的系数即为平面的一个法向量 截距式,其中a,b,c对应x,y,z截距2、平面平行与哪个坐标轴,或包含,那么他的法向量对应...
2022-03-13 10:41:15 3503
原创 导数和微分
(一)导数一.高阶导数1.莱布尼茨公式形式二项式展开2.常用的n阶导数公式二.反函数的求导法则 反导=原导倒(二)微分()一.微分的四则运算形似导数的四则运算,把求导符号看成微分符号即可二.一阶微分不变性(注意:当将u转换为x的形式时,f'(u)不要再进行求导,只将du换算成dx即可)...
2021-12-11 12:53:37 1254
原创 函数与极限
(一)记忆函数图像:倒三角函数图像(cscx,secx):原函数对着波峰波谷对贴反三角函数图像:arctanx与arccotx旋转原函数图像得到,arcsinx与arccosx与arctanx与arccotx结构形式一致(二)海涅定理(多用于证明某些函数极限不存在,它将函数的极限与数列的极限连接在一起)例如(三)常用不等式:sinx<=x<=tanx(x[])(四)复合函数的连续性若函数f在点x0连续,g在点连续,,则复合函数在点连续(1)(2)可用...
2021-12-11 12:36:51 4885
原创 高等数学定积分
(一)判断定积分的敛散性1.定义证明,通过计算定积分判断是否存在间接判断敛散2.比较判别法反常积分函数与x轴围成的面积的图像可以用于判断定积分结果,判断面积是无穷与否可以判断定积分结果是否存在,间接判断敛散与否。判断无限延伸的函数图像的面积是否无穷大,或小于某值可以通过y与x相乘近似成矩形面积来判断x与y相乘得到面积为x分之一x→0,x分之一无穷大,(0,a)区间的面积趋近无穷大x→无穷,x分之一无穷小,(a,+∞)的面积趋近无穷小...
2021-12-11 12:03:01 2548
原创 极限的求法
一 求极限的思路1 如果式子只含有x时,x→0时,忽略低阶(即省略),x→无穷,忽略高阶。2 利用等价代换替代等价无穷小(只有当想要替换的函数为因子时才可以替换),任何连续函数为因子时都可以直接将函数值作为极限值代入。3 结合洛必达和等价代换求解。4 泰勒展开。(1)泰勒展开1. 泰勒中值定理和拉格朗日余项(适用于任何x0与x,理论上x不必趋近x0) 泰勒中值定理 拉格朗日余项...
2021-12-09 22:32:00 8938
原创 高等数学不定积分
# (一)基本积分公式通过对d左侧函数的化简后可以直接套用积分表# (二)换元积分法准则: (1)d前后移原函数,d后前移导函数;(2)d后可以加减任意常数(方便配凑后直接利用积分表,只有d内外自变量一致时才能说某函数对应某自变量求原函数);(3)d前后有任意常数都是将其往外移;## 1 第一类换元积分法(将d前的部分函数转化为原函数后替代掉d后的自变量x,然后凑出自变量一致,利用积分表)1 积化...
2021-11-23 15:26:36 12563
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人