一、n维向量和消元法
1、只有维数相同的向量才能运算,才能比较相等
2、消元法:原本的齐次/非齐次线性方程组可以写为AX=0/AX=b的矩阵方程
将方程组表示为增广矩阵(A,b),利用增广矩阵的初等行变换来代替传统的方程间的消元法
还有一套特定的矩阵的秩规则来判断方程组的解
对于一定有解(即R(A)一定等于R(A,b))的齐次线性方程(当矩阵是方阵时,可以利用行列式的值代替秩来判断解)
3、求方程组的解:1、写出方程组的增广矩阵(A,b)
2、对增广矩阵进行初等行变换,化成行阶梯形矩阵判断有无解
3、有解的话再将其化为行最简矩阵求解
注意(题目要求我们求出方程的解,或要求我们用极大无关组线性表示其他向量时都不能使用列变换,因为这样会导致方程改变;但当要求我们判断线性有无关时,我们只需要求其矩阵的秩,所以对这个向量组对应的矩阵进行行列变换都可以,因为初等变换不改变矩阵的秩)
二、向量的线性相关性
1、线性表示(非齐次线性方程组):对一组n维向量a1,a2.....am有对应的一组不全为0的数,使得向量B能被表示为
B=k1a1+k2a2+.....kmam,则称向量B能被这个方程组线性表示
对于这个方程组,也可以化为矩阵相乘的形式:
当我们将分块矩阵a1,a2....am按列展开时,这个矩阵方程的形式就与上面的非齐次线性方程组消元法形式完全一致
所以我们可以得到当R(A)=R(A,b)时,方程组有解,即向量B有解,即其能被表示
2、线性组合(齐次线性方程组): 对一组n维向量a1,a2.....am有对应的一组不全为0的数,使得
0=k1a1+k2a2+.....kmam,即这个向量组线性相关
他同样可以表示为线性表示的方程组,只不过向量B要改为零向量
定理1:线性相关充要条件=向量组中有一个向量能被其他向量表示(即R(A)<n,有无穷解,不止零解即为线性相关)
定理2:线性相关充要条件=向量组对应矩阵的秩小于n(n为未知数个数),无关则秩=n
推论1:仅限方阵:当n维向量组对应矩阵的行列式=0,则线性相关,否则,线性无关
(通过行列式的值判断秩,通过秩与n的关系来判断线性关系)
推论2:当向量个数大于向量维数时(即未知量数(列数)大于方程数(行数),降维打击),秩一定小于未知量个数,一定线性相关
部分组相关,整体组必相关,整体组无关,部分组必无关
无关组添加分量仍无关,有关组删减分量仍有关
3、判断向量B能否被其余向量线性表示(将向量按列放合成大矩阵):
与求方程组的解做法一致,行阶梯矩阵->有无解,行最简矩阵->求具体解
4、判断向量组的线性相关性(将向量按列放合成大矩阵):
化为行阶梯矩阵后根据秩与未知数n(即向量组的向量数,方程组中比较靠未知数)
5、证明线性无关(利用系数为零列方程后把方程组k1,k2......kn当做未知量,再把他们的系数化为矩阵求解),证明线性相关(举一反例)
6、能否线性表示和是否线性相关都可以推出秩的情况(本质上就是非齐次线性方程和齐次线性方程)
三、向量组的秩
1、极大线性无关组(他的大小等于向量组的秩):定义:向量组的部分组满足线性无关且该向量组中的每个向量可被部分组表示
向量组A能被向量组B线性表示:即A中每个向量可被B表示
等价(具有传递性):向量组A和向量组B可以互相线性表示
2、向量组B能否被向量组A线性表示的充要条件:
证明:
推论:向量组A能被B表示,那么RB>=RA,如果B不可以由A表示,RB>RA;如果B可以由A表示,RB=RA
3、向量组的秩:
1、由零向量组成的向量组的秩为零
2、向量组的秩等于向量组对应矩阵的秩
4、求向量组的秩和其极大线性无关组:
(1)原向量不论是行或列,均按列放为矩阵
(2)只做行变换,化为行最简矩阵
(3)首非零元所在列作为极大无关组a1,a2.....
(4)其余非无关组向量a3,a4.....直接把系数乘以无关组表示
四、线性方程组解的结构
1、齐次线性方程组解的结构:
(1)性质:两解之和也是方程组的解;解乘以常数k仍为方程组解;k1a1+k2a2+.....knan仍为方程组解(a1,a2..an为方程组的解,k1,k2...kn为任意常数)
(2)求齐次方程组的通解:
注意:齐次线性方程的解向量个数=未知数-矩阵的秩
(3)非齐次线性方程的通解(方程的特解加上对应齐次方程的通解):
1、化简行列式,求出同解方程组,得到特解
2、根据同解方程组得到齐次方程的同解方程组,之后求出通解
3、将特解与通解相加