数学·包含学科简介

数学·包含学科简介

14 逻辑与基础
▪ 1410:演绎逻辑学 ▪ 1420:证明论 ▪ 1430:递归论
▪ 1440:模型论 ▪ 1450:公理集合论 ▪ 1460:数学基础
▪ 1499:数理逻辑与数学基础其他学科

17 数论
▪ 1710:初等数论 ▪ 1720:解析数论 ▪ 1730:代数数论
▪ 1740:超越数论 ▪ 1750:丢番图逼近 ▪ 1760:数的几何
▪ 1770:概率数论 ▪ 1780:计算数论 ▪ 1799:数论其他学科

21 代数学
▪ 2110:线性代数 ▪ 2115:群论 ▪ 2120:域论
▪ 2125:李群 ▪ 2130:李代数 ▪ 2135:Kac-Moody代数
▪ 2140:环论 ▪ 2145:模论 ▪ 2150:格论
▪ 2155:泛代数理论 ▪ 2160:范畴论 ▪ 2165:同调代数
▪ 2170:代数K理论 ▪ 2175:微分代数 ▪ 2180:代数编码理论
▪ 2199:代数学其他学科

27 几何学
▪ 2710:几何学基础 ▪ 2715:欧氏几何学 ▪ 2720:非欧几何学
▪ 2725:球面几何学 ▪ 2730:向量和张量分析 ▪ 2735:仿射几何学
▪ 2750:分数维几何 ▪ 2740:射影几何学 ▪ 2745:微分几何学
▪ 2755:计算几何学 ▪ 2799:几何学其他学科

31 拓扑学
▪ 3110:点集拓扑学 ▪ 3115:代数拓扑学 ▪ 3120:同伦论
▪ 3125:低维拓扑学 ▪ 3130:同调论 ▪ 3135:维数论
▪ 3140:格上拓扑学 ▪ 3145:纤维丛论 ▪ 3150:几何拓扑学
▪ 3155:奇点理论 ▪ 3160:微分拓扑学 ▪ 3199:拓扑学其他学科

34 数学分析
▪ 3410:微分学 ▪ 3420:积分学 ▪ 3430:级数论
▪ 3499:数学分析其他学科

41 函数论
▪ 4110:实变函数论 ▪ 4120:单复变函数论 ▪ 4130:多复变函数论
▪ 4140:函数逼近论 ▪ 4150:调和分析 ▪ 4160:复流形
▪ 4170:特殊函数论 ▪ 4199:函数论其他学科

44 常微分方程
▪ 4410:定性理论 ▪ 4420:稳定性理论 ▪ 4430:解析理论
▪ 4499:常微分方程其他学科

47 偏微分方程
▪ 4710:椭圆型偏微分方程 ▪ 4720:双曲型偏微分方程 ▪ 4730:抛物型偏微分方程
▪ 4740:非线性偏微分方程 ▪ 4799:偏微分方程其他学科

51 动力系统
▪ 5110:微分动力系统 ▪ 5120:拓扑动力系统 ▪ 5130:复动力系统
▪ 5199:动力系统其他学科

57 泛函分析
▪ 5710:线性算子理论 ▪ 5715:变分法 ▪ 5720:拓扑线性空间
▪ 5725:希尔伯特空间 ▪ 5730:函数空间 ▪ 5735:巴拿赫空间
▪ 5740:算子代数 ▪ 5745:测度与积分 ▪ 5750:广义函数论
▪ 5755:非线性泛函分析 ▪ 5799:泛函分析其他学科

61 计算数学
▪ 6110:插值法与逼近论 ▪ 6120:常微分方程数值解 ▪ 6130:偏微分方程数值解
▪ 6140:积分方程数值解 ▪ 6150:数值代数 ▪ 6160:连续问题离散化方法
▪ 6170:随机数值实验 ▪ 6180:误差分析 ▪ 6199:计算数学其他学科

64 概率论
▪ 6410:几何概率 ▪ 6420:概率分布 ▪ 6430:极限理论
▪ 6440:随机过程 ▪ 6450:马尔可夫过程 ▪ 6460:随机分析
▪ 6470:鞅论 ▪ 6480:应用概率论 ▪ 6499:概率论其他学科

67 数理统计学
▪ 6710:抽样理论 ▪ 6715:假设检验 ▪ 6720:非参数统计
▪ 6725:方差分析 ▪ 6730:相关回归分析 ▪ 6735:统计推断
▪ 6740:贝叶斯统计 ▪ 6745:试验设计 ▪ 6750:多元分析
▪ 6755:统计判决理论 ▪ 6760:时间序列分析 ▪ 6799:数理统计学其他学科

71 应用统计数学
▪ 7110:统计质量控制 ▪ 7120:可靠性数学 ▪ 7130:保险数学
▪ 7140:统计模拟 ▪ 7199:应用统计数学其他学科

74 运筹学
▪ 7410:线性规划 ▪ 7415:非线性规划 ▪ 7420:动态规划
▪ 7425:组合最优化 ▪ 7430:参数规划 ▪ 7435:整数规划
▪ 7440:随机规划 ▪ 7445:排队论 ▪ 7450:对策论
▪ 7460:决策论 ▪ 7455:库存论 ▪ 7465:搜索论
▪ 7470:图论 ▪ 7475:统筹论 ▪ 7480:最优化
▪ 7499:运筹学其他学科

其他二级学科
▪ 11:数学史 ▪ 24:代数几何学 ▪ 37:非标准分析
▪ 54:积分方程 ▪ 77:组合数学 ▪ 81:离散数学
▪ 84:模糊数学 ▪ 87:应用数学 ▪ 99:数学其他学科
学科前数字为国家标准学科代码

其他学科详细情况查看下面地址:
https://max.book118.com/html/2023/0512/8127043027005066.shtm
中华人民共和国学科分类与代码国家标准(GBT13745-2009)

https://learning.sohu.com/a/672045527_121124028
2023版普通高等学校本科专业目录(12个门类792个本科专业)

根据教育部最新公布的《普通高等学校本科专业目录》可知,数学类专业属于理学门类,包括数学与应用数学、信息与计算科学、数理基础科学、数据计算及应用等4个专业,以下是具体专业名单及专业代码一览表,希望对大家有所帮助。

其中特设专业在专业代码后加T表示,国家控制布点专业在专业代码后加K表示。
在这里插入图片描述

序号 门类 专业类 专业代码 专业名称 学位授予门类 修业年限
1 理学 数学类 070101 数学与应用数学 理学 四年
2 理学 数学类 070102 信息与计算科学 理学 四年
3 理学 数学类 070103T 数理基础科学 理学 四年
4 理学 数学类 070104T 数据计算及应用 理学 四年
数学与应用数学专业简介

数学与应用数学(Mathematics and Applied Mathematics)是一个学科专业,该专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练。

主要课程:数学分析学、高等代数与解析几何、概率论基础与数理统计、大学物理学、数学模型、数学实验、数学软件、计算机基础、数值方法、泛函分析,微分几何,近世代数,偏微分方程,数学物理方程,常微分方程,复变函数,实变函数,抽象代数,数学建模,数学史等,以及根据应用方向选择的基本课程。

信息与计算科学专业简介:

信息与计算科学专业(Information and Computing Science)原名”计算数学”,1987年更名为“计算数学及其应用软件”,1998年教育部将其更名为“信息与计算科学”,是以信息领域为背景,数学与信息,计算机管理相结合的数学类专业。该专业培养的学生具有良好的数学基础,能熟练地使用计算机,初步具备在信息与计算机科学领域的某个方向上从事科学研究,解决实际问题,设计开发有关计算机软件的能力。

主要课程:数学分析、高等代数、解析几何、概率统计、数学模型、离散数学、模糊数学、实变函数、复变函数、微分方程、物理学、信息处理、信息编码与信息安全、现代密码学教程、计算智能、计算机科学基础、数值计算方法、数据挖掘、最优化理论、运筹学、计算机组成原理、计算机网络、计算机图形学、c/c++语言、java语言、汇编语言、算法与数据结构、数据库应用技术、软件系统、操作系统等。

数理基础科学专业简介:

数理基础科学专业主要培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,尤其是在数学、物理上具有创新的能力的人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。

主要课程:数学分析、高等代数、解析几何、力学、热学、常微分方程、电磁学、理论力学、光学、实变函数、普通物理实验、数理统计、量子力学、数学物理方法、概率论、原子物理学等。

数据计算及应用专业简介:

数据计算及应用是一门本科专业。

培养德智体全面发展,具有良好的数学基础和数学思维能力,掌握信息科学和统计学的基本理论、方法与技能,接受科学研究的初步训练,具备一定的数据建模、高性能计算、大数据处理以及程序设计能力,能运用所学知识与技能解决数据分析、信息处理、科学与工程计算等领域实际问题的复合型应用理科专业人才。

主要课程:数学分析、高等代数、解析几何、概率论、数理统计、常微分方程、数据科学导论、高级语言程序设计、数据库原理、数据结构、统计预测与决策 核心课程:数据建模、数值最优化方法、数据算法与分析、应用时间序列分析、数据挖掘基础、统计推断、统计计算、机器学习、R语言与数据分析、Hadoop大数据分析、数据可视化分析、多元统计分析、矩阵计算、应用随机分析等理论及实践教学环节。

计算机类专业名称:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值