阿城的三王(棋王 树王 孩子王)

               
《Mactalk 跨越边界》中有一篇文章,提到了很多老池喜爱的作家,老池喜欢的作家大多和我相似,大多数作家的作品我也都阅读过,但唯独有一个作家,别说作品,连作家的名字,都是第一次听说,他就是阿城。

阿城原名钟阿城,阿城的作品大部分是上个世纪八十年代发表的,代表作是三王《棋王》、《树王》、《孩子王》,1990后就移居美国了。可能因为他的作品发布很早,发表的作品又算不多,所以不太了解这个人,直到Mactalk的书推荐,才得以了解,刚好Kindle书城里有他的作品,就买来一读,一读之下,真的是惊为天人!阿城对中国文字的运用到了登峰造极的程度,读过棋王的读者都会同意,他的笔力雄厚惊奇,像一坛子酒,越读越有味。摘录《棋王》中的一段,可以感受一下:
我看他对吃很感兴趣,就注意他吃的时候。列车上给我们这几节知青车厢送饭 时,他若心思不在下棋上,就稍稍有些不安。听见前面大家拿吃时铝盒的碰撞声, 他常常闭上眼,嘴巴紧紧收着,倒好像有些恶心。拿到饭后,马上就开始吃,吃得 很快,喉节一缩一缩的,脸上绷满了筋。常常突然停下来,很小心地将嘴边或下巴 上的饭粒儿和汤水油花儿用整个儿食指抹进嘴里。若饭粒儿落在衣服上,就马上一 按,拈进嘴里。若一个没按住,饭粒儿由衣服上掉下地,他也立刻双脚不再移动, 转了上身找。这时候他若碰上我的目光,就放慢速度。吃完以后,他把两只筷子吮 净,拿水把饭盒冲满,先将上面一层油花吸净,然后就带着安全到达彼岸的神色小口小口的呷。

就连谁也瞧不上的王朔,对钟阿城都是有极高的评价:阿城,我的天,这可不是一般人,史铁生拿我和他并列,真是高抬我了。我以为北京这地方每几十年就要有一个人成精,这几十年养成精的就是阿城。 这个人,我是极其仰慕其人,若是下令,全国每人都必须追星,我就追阿城。

(从左至右:王朔、须兰、阿城、陈村)

阿城的书需要慢慢读,细细品味他文字的味道,遗憾的是阿城的作品太少,这么好的文字,真希望能再多一些。


           

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

在电子设计自动化(EDA)领域,Verilog HDL 是一种重要的硬件描述语言,广泛应用于数字系统的设计,尤其是在嵌入式系统、FPGA 设计以及数字电路教学中。本文将探讨如何利用 Verilog HDL 实现一个 16×16 点阵字符显示功能。16×16 点阵显示器由 16 行和 16 列的像素组成,共需 256 个二进制位来控制每个像素的亮灭,常用于简单字符或图形显示。 要实现这一功能,首先需要掌握基本的逻辑门(如与门、或门、非门、与非门、或非门等)和组合逻辑电路,以及寄存器和计数器等时序逻辑电路。设计的核心是构建一个模块,该模块接收字符输入(如 ASCII 码),将其转换为 16×16 的二进制位流,进而驱动点阵的 LED 灯。具体而言,该模块包含以下部分:一是输入接口,通常为 8 位的 ASCII 码输入,用于指定要显示的字符;二是内部存储,用于存储字符对应的 16×16 点阵数据,可采用寄存器或分布式 RAM 实现;三是行列驱动逻辑,将点阵数据转换为驱动 LED 矩阵的信号,包含 16 个行输出线和 16 个列使能信号,按特定顺序选通点亮对应 LED;四是时序控制,通过计数器逐行扫描,按顺序控制每行点亮;五是复用逻辑(可选),若点阵支持多颜色或亮度等级,则需额外逻辑控制像素状态。 设计过程中,需用 Verilog 代码描述上述逻辑,并借助仿真工具验证功能,确保能正确将输入字符转换为点阵显示。之后将设计综合到目标 FPGA 架构,通过配置 FPGA 实现硬件功能。实际项目中,“led_lattice”文件可能包含 Verilog 源代码、测试平台文件、配置文件及仿真结果。其中,测试平台用于模拟输入、检查输出,验证设计正确性。掌握 Verilog HDL 实现 16×16 点阵字符显示,涉及硬件描述语言基础、数字逻辑设计、字符编码和 FPGA 编程等多方面知识,是学习
### 构建棋类游戏AI的核心方法 构建一个基于机器学习的棋类游戏AI可以通过多种技术实现,其中一种常用的方法是结合强化学习和蒙特卡洛搜索树(Monte Carlo Tree Search, MCTS)。以下是关于如何设计并实现这种AI的关键要素: #### 1. 游戏环境搭建 为了创建一个功能完善的棋类游戏AI,首先需要建立一个稳定的游戏环境。在这个过程中,可以使用像Pygame这样的工具包来完成图形界面的设计和交互逻辑的编写[^1]。 #### 2. AI决策机制——蒙特卡洛搜索树(MCTS) MCTS是一种用于优化决策过程的技术,在棋类游戏中被广泛采用。它通过模拟大量可能的游戏状态,评估每一步动作的价值,并最终选择最优解作为下一步行动方案。在具体实践中,可以根据设定的不同难度级别调整MCTS算法中的迭代次数,以此控制AI对未来几步走法考虑的程度。 #### 3. 强化学习模型训练 除了传统的启发式搜索外,还可以引入深度强化学习进一步提升AI性能。这种方法通常涉及神经网络结构的学习与更新,例如AlphaZero所使用的架构就是典型代表之一。这类系统能够在自我对弈的过程中不断改进策略,直至达到高水平竞技能力。 #### 4. 自动化调参 (AutoML) 对于初学者来说,手动调节复杂的超参数可能会非常困难;因此,可以借助自动化机器学习框架来进行高效探索。这些工具可以帮助快速找到适合特定任务的最佳配置组合,包括但不限于特征工程、模型选择等方面的工作[^2]。 #### 示例代码片段:简单版MCTS 实现概览 下面给出一段简化版本的 Python 伪代码展示基本原理: ```python class Node: def __init__(self, state): self.state = state self.children = [] def select(node): ... def expand(node): ... def simulate(node): ... def backpropagate(node, result): ... root = Node(initial_state) for _ in range(iterations): leaf = select(root) child = expand(leaf) outcome = simulate(child) backpropagate(child, outcome) ``` 此段代码仅提供了一个高层次视角下的操作流程示意,实际应用时还需要补充更多细节部分才能形成完整的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值