Partitioning is a technique used in databases to divide a large table into smaller, more manageable pieces called partitions, which can help improve performance, manageability, and scalability. Each partition can be stored separately and can be queried independently. Partitioning helps to improve query performance by limiting the amount of data that needs to be scanned for certain queries.
There are several partitioning strategies, and the right one depends on your data access patterns and business requirements. Below is an overview of the partitioning principles and types:
1. Partitioning Principles
- Data Distribution: Partitioning divides the data based on certain criteria. This enables more efficient querying, indexing, and maintenance of large datasets.
- Transparent to Applications: The application doesn't need to be aware of the partitioning. SQL queries work just like they would on a non-partitioned table, but the database engine handles partitioning behind the scenes.
- Improved Query Performance: By limiting the data scanned (called "pruning"), partitioning can reduce query execution time, especially if the partition key is used in WHERE clauses or join conditions.
- Parallelism: Since partitions can be managed separately, the database engine can perform parallel operations (e.g., parallel scans) to improve performance.
- Manageability: Partitioning makes it easier to manage large datasets, such as archiving old data or purging records from specific partitions, without affecting the rest of the table.</