学号:2013211492
第二题:
(1) 学生(学号,姓名,出生日期,系名,班号,宿舍区)
班级(班号,专业名,系名,系办公室地点,人数)
系(系名,系号,系办公室地点,人数)
学会(学会名,成立年份,地点,人数,入会年份)
(2) 学生关系的最小函数依赖集:F={学号->姓名,学号->出生日期,学号->系名,系名->宿舍区}
存在传递依赖:学号->系名,系名->宿舍区
班级关系的最小函数依赖集:F = {班号->专业名,班号->系名,班号->人数,(系名,专业名)->班号,系名->系办公室地点}
存在传递依赖:班号->系名,系名->系办公室地点
其中(系名,专业名)->班号为完全依赖因为班号不单独依赖与系名和专业名
系关系的最小函数依赖集:F = {系号->系名,系名->系办公室地点,系名->人数,系名->系号}
学会关系的最小函数依赖集:F = {学会名->成立年份,学会名->地点,学会名->人数}
(3) 学生关系的候选码:学号,外码为:系名,班号
班级关系的候选码:班号,外码:系名
系关系的候选码:(系名,专业名),班号,外码:系名
学会关系的候选码:学会名
第三题:
(1)
根据函数依赖可得:
属性B、D、BD为L类(仅出现在F的函数依赖左部)。且在函数依赖的左部和右部均未出现的属性为0。
根据定理:对于给定的关系模式R及其函数依赖集F,若X(X∈R)是L类属性,则X必为R 的任一候选码的成员。
因此属性B、D必为候选码的成员。且它们的闭包为: BF+=ABC,D F+=ACD,BD F+=ABCD 再根据推论:对于给
定的关系模式R及其函 数依赖集F,若X(X∈R)是L类属性,且X F+
包含了R的全部属性,则X必为R的唯一候选码。 故BD是R的唯一候选码。所以R的候选码为BD。
(2)
将F中所有函数依赖的依赖因素写成单属性集形式: F={A→C,C→A,B→A,B→C,D→A,D→C,BD→A}
F中的B→C可以从B→A和A→C推导出来,B→C是冗余的,删掉B→C可得: F={A→C,C→A,B→A,D→A,D→C,BD→A}
F中的D→C可以从D→A 和 A→C推导出来,D→C是冗余的,删掉D→C可得: F={A→C,C→A,B→A,D→A,BD→A}
F中的BD→A可以从B→A 和 D→A推导出来,是冗余的,删掉BD→A可得: F={A→C,C→A,B→A,D→A }
所以F的最小函数依