leetcode 887.鸡蛋掉落 (Super Egg Drop)c语言
1.description
中文力扣中题意描述不够清楚,下面是leetcode原题:
You are given K
eggs, and you have access to a building with N
floors from 1
to N
.
Each egg is identical in function, and if an egg breaks, you cannot drop it again.
You know that there exists a floor F
with 0 <= F <= N
such that any egg dropped at a floor higher than F
will break, and any egg dropped at or below floor F
will not break.
Each move, you may take an egg (if you have an unbroken one) and drop it from any floor X
(with 1 <= X <= N
).
Your goal is to know with certainty what the value of F
is.
What is the minimum number of moves that you need to know with certainty what F
is, regardless of the initial value of F
?
Example 1:
Input: K = 1, N = 2
Output: 2
Explanation:
Drop the egg from floor 1. If it breaks, we know with certainty that F = 0.
Otherwise, drop the egg from floor 2. If it breaks, we know with certainty that F = 1.
If it didn't break, then we know with certainty F = 2.
Hence, we needed 2 moves in the worst case to know what F is with certainty.
Example 2:
Input: K = 2, N = 6
Output: 3
Example 3:
Input: K = 3, N = 14
Output: 4
Note:
1 <= K <= 100
1 <= N <= 10000
2.solution
一开始题意都不好理解,看了别人的思路明白了一点,属于典型的DP问题
2.1 超时DP
状态定义:dp[i] [j] 表示 i 层楼(不是高度,可理解为区间长度),使用 j 个鸡蛋的最少实验次数,因此dp[N] [K]即为题解。
说明:
i
表示的是楼层的大小,不是高度(第几层)的意思,例如楼层区间[8, 9, 10]
的大小为 3。j
表示可以使用的鸡蛋的个数,它是约束条件。
状态转移方程:
设指定的楼层为 k,k >= 1 且 k <= i:
如果鸡蛋破碎,测试 F 值的实验就得在 k 层以下做(不包括 k 层),这里已经使用了一个鸡蛋,因此测出 F 值的最少实验次数是:dp[k - 1] [j - 1];
如果鸡蛋完好,测试 F 值的实验就得在 k 层以上做(不包括 k 层),这里这个鸡蛋还能使用,因此测出 F 值的最少实验次数是:dp[i - k] [j],例如总共 8 层,在第 5 层扔下去没有破碎,则需要在 [6, 7, 8] 层继续做实验,因此区间的大小就是 8 - 5 = 3。
最坏情况下,是这两个子问题的较大者,由于在第 k 层扔下鸡蛋算作一次实验,k 的值在 [1, i],对于每一个 k 都对应了一组值的最大值,取这些 k 下的最小值(最优子结构),因此:
d
p
[
i
]
[
j
]
=
min
1
≤
k
≤
i
(
max
(
d
p
[
k
−
1
]
[
j
−
1
]
,
d
p
[
i
−
k
]
[
j
]
)
+
1
)
d p[i][j]=\min _{1 \leq k \leq i}(\max (d p[k-1][j-1], d p[i-k][j])+1)
dp[i][j]=1≤k≤imin(max(dp[k−1][j−1],dp[i−k][j])+1)
初始化:
一般而言,需要 0 这个状态的值,这里 0 层楼和 0 个鸡蛋是需要考虑进去的,它们的值会被后来的值所参考,并且也比较容易得到。
因此表格需要 N + 1 行,K + 1 列。
由于 F 值不会超过最大楼层的高度,要求的是最小值,因此初始化的时候,可以叫表格的单元格值设置成一个很大的数,但是这个数肯定也不会超过当前考虑的楼层的高度。
static inline int min(int a, int b){
return a < b ? a : b;
}
static inline int max(int a, int b){
return a > b ? a : b;
}
int superEggDrop(int K, int N){
// dp:(N+1)*(K+1), 0 个楼层和 0 个鸡蛋的情况都需要算上去,虽然没有实际的意义,但是作为递推的起点,被其它状态值所参考
int **dp = (int**)malloc((N+1)*sizeof(int*));
for(int i=0; i<N+1; ++i){
dp[i] = (int*)malloc((K+1)*sizeof(int));
}
for(int i=0; i<N+1; ++i){
for(int j=1; j<K+1; ++j){
dp[i][j] = i;
}
}
// 单独初始化第0列, 0个鸡蛋, 无法测试, 故为0
for(int i=0; i<N+1; ++i){
dp[i][0] = 0;
}
for(int i=2; i<N+1; ++i){
for(int j=2; j<K+1; ++j){
for(int k=1; k<=i; ++k){
dp[i][j] = min(dp[i][j], max(dp[k-1][j-1], dp[i-k][j]) + 1);
}
}
}
return dp[N][K];
}
结果超时,时间复杂度:O(N^2K)
空间复杂度:O(NK)
2.2 DP+二分优化
「状态转移方程」里最外层的变量是 k,它枚举了扔下鸡蛋的楼层的高度,这里它是自变量,将其余的 i 和 j 视为常数:
dp[k - 1] [j - 1]:根据语义,k 增大的时候,楼层大小越大,它的值就越大;
dp[i - k] [j]:根据语义,k 增大的时候,楼层大小越小,它的值就越小。
可以发现 dp[k - 1] [j - 1] 单调不减,dp[i - k] [j] 单调不增,并且它们的值都是整数。因此,这里求得是一个“谷底”,可考虑用二分查找优化。
static inline int max(int a, int b){
return a > b ? a : b;
}
int superEggDrop(int K, int N){
// dp:(N+1)*(K+1), 0 个楼层和 0 个鸡蛋的情况都需要算上去,虽然没有实际的意义,但是作为递推的起点,被其它状态值所参考
int **dp = (int**)malloc((N+1)*sizeof(int*));
for(int i=0; i<N+1; ++i){
dp[i] = (int*)malloc((K+1)*sizeof(int));
}
for(int i=0; i<N+1; ++i){
for(int j=1; j<K+1; ++j){
dp[i][j] = i;
}
}
// 单独初始化第0列, 0个鸡蛋, 无法测试, 故为0
for(int i=0; i<N+1; ++i){
dp[i][0] = 0;
}
for(int i=2; i<N+1; ++i){
for(int j=2; j<K+1; ++j){
int low = 1, high = i;
while(low <= high){
int mid = low + ((high - low)>>1);
int val1 = dp[mid-1][j-1];
int val2 = dp[i-mid][j];
if (val1 > val2){
if(mid == 1 || dp[mid-2][j-1] < dp[i-mid+1][j]){
break;
}
high = mid - 1;
}else if(val1 == val2){
break;
}else{
low = mid + 1;
}
}
int mid = low + ((high - low)>>1);
dp[i][j] = dp[mid-1][j-1] + 1;
}
}
return dp[N][K];
}
时间复杂度:O(NKlog N)
空间复杂度:O(NK)
执行用时:172 ms
内存消耗:37.7 MB
二分查找还可以优化,通过不断更新low的下限(low下限随着楼层N的增大也在增大)
2.3 换种思路
上述方法其实是蛮力解,换种思路:这里状态的定义有所不同,dp[k] [s] 表示用 k 个鸡蛋操作 s 步 能够求解的最大楼层。
int superEggDrop(int K, int N){
int **dp = (int**)malloc((K+1)*sizeof(int*));
for(int i=0; i<K+1; ++i){
dp[i] = (int*)malloc((N+1)*sizeof(int));
memset(dp[i], 0, (N+1)*sizeof(int));
}
int step = 0;
while(dp[K][step] < N){
step++;
for(int i=1; i<=K; ++i){
// dp[k][s] means the number of floors we can detect with k eggs and s steps
dp[i][step] = dp[i][step-1] + dp[i-1][step-1] + 1;
}
}
// free
for(int i=0; i<K+1; ++i){
if(dp[i]){
free(dp[i]);
}
}
if(dp){
free(dp);
}
return step;
}
时间复杂度:O(Klog N)
空间复杂度:O(NK)
执行用时:4 ms
内存消耗:26.9 MB
dp表可进一步缩减为一维,空间复杂度进一步减小:
int superEggDrop(int K, int N){
int *dp = (int*)malloc((K+1)*sizeof(int));
memset(dp, 0, (K+1)*sizeof(int));
int step = 0;
while(dp[K] < N){
step++;
for(int i=K; i>=1; --i){
dp[i] = dp[i] + dp[i-1] + 1;
}
}
// free
if(dp){
free(dp);
}
return step;
}
时间复杂度:O(Klog N)
空间复杂度:O(K)
执行用时:0 ms
内存消耗:5.4 MB
参考: