【C++ 真题】P11227 [CSP-J 2024] 扑克牌

[CSP-J 2024] 扑克牌

题目描述

小 P 从同学小 Q 那儿借来一副 n n n 张牌的扑克牌。

本题中我们不考虑大小王,此时每张牌具有两个属性:花色和点数。花色共有 4 4 4 种:方片、草花、红桃和黑桃。点数共有 13 13 13 种,从小到大分别为 A 23456789 T J Q K \tt{A 2 3 4 5 6 7 8 9 T J Q K} A23456789TJQK。注意:点数 10 10 10 在本题中记为 T \tt T T

我们称一副扑克牌是完整的,当且仅当对于每一种花色和每一种点数,都恰好有一张牌具有对应的花色和点数。由此,一副完整的扑克牌恰好有 4 × 13 = 52 4 \times 13 = 52 4×13=52 张牌。以下图片展示了一副完整的扑克牌里所有的 52 张牌。
在这里插入图片描述

小 P 借来的牌可能不是完整的,为此小 P 准备再向同学小 S 借若干张牌。可以认为小 S 每种牌都有无限张,因此小 P 可以任意选择借来的牌。小 P 想知道他至少得向小 S 借多少张牌,才能让从小 S 和小 Q 借来的牌中,可以选出 52 52 52 张牌构成一副完整的扑克牌。

为了方便你的输入,我们使用字符 D \tt D D 代表方片,字符 C \tt C C 代表草花,字符 H \tt H H 代表红桃,字符 S \tt S S 代表黑桃,这样每张牌可以通过一个长度为 2 2 2 的字符串表示,其中第一个字符表示这张牌的花色,第二个字符表示这张牌的点数,例如 C A \tt{CA} CA 表示草花 A \tt A A S T \tt{ST} ST 表示黑桃 T \tt T T(黑桃 10)。

输入格式

输入的第一行包含一个整数 n n n 表示牌数。

接下来 n n n 行:

每行包含一个长度为 2 2 2 的字符串描述一张牌,其中第一个字符描述其花色,第二个字符描述其点数。

输出格式

输出一行一个整数,表示最少还需要向小 S 借几张牌才能凑成一副完整的扑克牌。

样例 #1

样例输入 #1

1
SA

样例输出 #1

51

样例 #2

样例输入 #2

4
DQ
H3
DQ
DT

样例输出 #2

49

提示

【样例 1 解释】

这一副牌中包含一张黑桃 A \tt A A,小 P 还需要借除了黑桃 A \tt A A 以外的 51 张牌以构成一副完整的扑克牌。

【样例 2 解释】

这一副牌中包含两张方片 Q \tt Q Q、一张方片 T \tt T T(方片 10)以及一张红桃 3,小 P 还需要借除了红桃 3、方片 T \tt T T 和方片 Q \tt Q Q 以外的 49 49 49 张牌。

【样例 3 解释】

见选手目录下的 poker/poker3.in 与 poker/poker3.ans。

这一副扑克牌是完整的,故不需要再借任何牌。

该样例满足所有牌按照点数从小到大依次输入,点数相同时按照方片、草花、红桃、黑桃的顺序依次输入。

【数据范围】

对于所有测试数据,保证: 1 ≤ n ≤ 52 1 \leq n \leq 52 1n52,输入的 n n n 个字符串每个都代表一张合法的扑克牌,即字符串长度为 2 2 2,且第一个字符为 D C H S \tt{D C H S} DCHS 中的某个字符,第二个字符为 A 23456789 T J Q K \tt{A 2 3 4 5 6 7 8 9 T J Q K} A23456789TJQK 中的某个字符。

测试点编号 n ≤ n \leq n特殊性质
1 1 1 1 1 1A
2 ∼ 4 2\sim 4 24 52 52 52A
5 ∼ 7 5\sim 7 57 52 52 52B
8 ∼ 10 8\sim 10 810 52 52 52

特殊性质 A:保证输入的 n n n 张牌两两不同。

特殊性质 B:保证所有牌按照点数从小到大依次输入,点数相同时按照方片、草花、红桃、黑桃的顺序依次输入。

题解

#include<bits/stdc++.h>
#define i64 long long
using namespace std;

string a;
int D[13]={0},C[13]={0},H[13]={0},S[13]={0};
int sum=0;

int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;++i){
		cin>>a;
		if(a[0]=='D'){
			if(a[1]=='A') D[0]++;
			if(a[1]=='2') D[1]++;
			if(a[1]=='3') D[2]++;
			if(a[1]=='4') D[3]++;
			if(a[1]=='5') D[4]++;
			if(a[1]=='6') D[5]++;
			if(a[1]=='7') D[6]++;
			if(a[1]=='8') D[7]++;
			if(a[1]=='9') D[8]++;
			if(a[1]=='T') D[9]++;
			if(a[1]=='J') D[10]++;
			if(a[1]=='Q') D[11]++;
			if(a[1]=='K') D[12]++;
		}else if(a[0]=='C'){
			if(a[1]=='A') C[0]++;
			if(a[1]=='2') C[1]++;
			if(a[1]=='3') C[2]++;
			if(a[1]=='4') C[3]++;
			if(a[1]=='5') C[4]++;
			if(a[1]=='6') C[5]++;
			if(a[1]=='7') C[6]++;
			if(a[1]=='8') C[7]++;
			if(a[1]=='9') C[8]++;
			if(a[1]=='T') C[9]++;
			if(a[1]=='J') C[10]++;
			if(a[1]=='Q') C[11]++;
			if(a[1]=='K') C[12]++;
		}else if(a[0]=='H'){
			if(a[1]=='A') H[0]++;
			if(a[1]=='2') H[1]++;
			if(a[1]=='3') H[2]++;
			if(a[1]=='4') H[3]++;
			if(a[1]=='5') H[4]++;
			if(a[1]=='6') H[5]++;
			if(a[1]=='7') H[6]++;
			if(a[1]=='8') H[7]++;
			if(a[1]=='9') H[8]++;
			if(a[1]=='T') H[9]++;
			if(a[1]=='J') H[10]++;
			if(a[1]=='Q') H[11]++;
			if(a[1]=='K') H[12]++;
		}else if(a[0]=='S'){
			if(a[1]=='A') S[0]++;
			if(a[1]=='2') S[1]++;
			if(a[1]=='3') S[2]++;
			if(a[1]=='4') S[3]++;
			if(a[1]=='5') S[4]++;
			if(a[1]=='6') S[5]++;
			if(a[1]=='7') S[6]++;
			if(a[1]=='8') S[7]++;
			if(a[1]=='9') S[8]++;
			if(a[1]=='T') S[9]++;
			if(a[1]=='J') S[10]++;
			if(a[1]=='Q') S[11]++;
			if(a[1]=='K') S[12]++;
		}
	}
	
	for(int i=0;i<=13;++i){			//遍历每种花色
		if(D[i]>0) sum++;
	}for(int i=0;i<=13;++i){
		if(C[i]>0) sum++;
	}for(int i=0;i<=13;++i){
		if(H[i]>0) sum++;
	}for(int i=0;i<=13;++i){
		if(S[i]>0) sum++;
	}
	
	cout<<52-sum<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QuantumStack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值