基于局部描述符多线性流形分析的人脸识别与ECOC遗传优化算法
在模式识别领域,人脸识别和多类别分类是重要的研究方向。本文将介绍基于局部描述符多线性流形分析的人脸识别方法,以及一种遗传启发的纠错输出码(ECOC)优化算法。
基于局部描述符的人脸识别
在人脸识别中,为了有效提取特征,我们采用了局部描述符的方法。具体步骤如下:
1. 特征提取
- SIFT特征 :对于彩色图像的局部区域,我们在每个颜色分量(R、G和B)中提取SIFT特征,每个局部区域可得到一个128×3的二维张量。为了使描述符对支撑区域位置的小变化不敏感,并更强调区域中心附近的梯度,我们使用高斯窗口函数为每个采样点的幅度分配权重。同时,为了获得对光照变化的鲁棒性,我们将每个描述符的范数缩放为单位1,使描述符对形式为aI(x) + b的光照变换保持不变。
- 改进梯度与NHOG特征 :为了提取对光照变化具有鲁棒性的特征,我们计算改进的梯度(强度归一化梯度)。给定图像I,使用以下公式计算:
[
\begin{align }
I_x(i, j) &= \frac{I(i + 1, j) - I(i - 1, j)}{I(i + 1, j) + I(i - 1, j)}\
I_y(i, j) &= \frac{I(i, j + 1) - I(i, j - 1)}{I(i, j + 1) + I(i, j - 1)}\
I_{xy}(i, j) &= \sqrt{I_x(i, j)^2 + I_y(i, j)^2}
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



