高维概率密度函数分类与面部识别方法解析
1. 高维概率密度函数分类方法
在处理高维概率密度函数(PDF)分类问题时,我们面临着将一个对象准确归类到特定类别的挑战。下面详细介绍一种有效的分类方法。
1.1 问题定义
一个对象 (X) 由一组从某个分布中采样得到的 (n) 个数据点描述,即 (X = { \overline{x}_1, \overline{x}_2, …, \overline{x}_n }),每个数据点 (\overline{x}) 是一个特征向量 (\overline{x} = [x_1, x_2, …, x_d]),其中 (d) 是特征的数量。给定多个不同的类别,每个类别 (i) 由另一组从训练集中属于该类别的所有对象中抽取的 (n) 个数据点描述,即 (C_i = { \overline{y}_1, \overline{y}_2, …, \overline{y}_n }),我们的目标是确定对象 (X) 最可能属于的类别,这通过贝叶斯定理来计算。
1.2 方法步骤
- 生成词汇表 :生成合适的码字字典是关键的第一步。常见的生成方法有多种:
- 均匀分布选择点:在特征空间中均匀选择点,但这种方法可能导致部分空间未被充分利用,产生冗余码字,而一些更有用的区域可能表示不足。
- 随机选择训练数据点:这种方法在很大程度上消除了上述问题,但使用对训练数据进行聚类得到的质心通常能提供更好的表示。
- 为每个类别单独聚类并组合:确保每个类别都有合适的码字,但可能导致组合字典中出现非常相似的码字。
订阅专栏 解锁全文
24

被折叠的 条评论
为什么被折叠?



