88、高维概率密度函数分类与面部识别方法解析

高维概率密度函数分类与面部识别方法解析

1. 高维概率密度函数分类方法

在处理高维概率密度函数(PDF)分类问题时,我们面临着将一个对象准确归类到特定类别的挑战。下面详细介绍一种有效的分类方法。

1.1 问题定义

一个对象 (X) 由一组从某个分布中采样得到的 (n) 个数据点描述,即 (X = { \overline{x}_1, \overline{x}_2, …, \overline{x}_n }),每个数据点 (\overline{x}) 是一个特征向量 (\overline{x} = [x_1, x_2, …, x_d]),其中 (d) 是特征的数量。给定多个不同的类别,每个类别 (i) 由另一组从训练集中属于该类别的所有对象中抽取的 (n) 个数据点描述,即 (C_i = { \overline{y}_1, \overline{y}_2, …, \overline{y}_n }),我们的目标是确定对象 (X) 最可能属于的类别,这通过贝叶斯定理来计算。

1.2 方法步骤
  • 生成词汇表 :生成合适的码字字典是关键的第一步。常见的生成方法有多种:
    • 均匀分布选择点:在特征空间中均匀选择点,但这种方法可能导致部分空间未被充分利用,产生冗余码字,而一些更有用的区域可能表示不足。
    • 随机选择训练数据点:这种方法在很大程度上消除了上述问题,但使用对训练数据进行聚类得到的质心通常能提供更好的表示。
    • 为每个类别单独聚类并组合:确保每个类别都有合适的码字,但可能导致组合字典中出现非常相似的码字。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值