【图】Floyd算法简述

Floyd算法有于求一个带权有向图(Wighted Directed Graph)的任意两点的最短距离的算法,运用了动态规划的思想。

核心思想:在两个顶点之间插入一个或一个以上的中转点,比较经过与不经过中转点的距离哪个更短。同时,我们需要引入2个矩阵,一个邻接矩阵A,用来计算每个相邻点的距离,也就是我们的已知条件,第二个矩阵Path,则用来表示中间点k的代数。

代码实现:

//Floyd
void Floyd(Graph G){
	int A[maxsize][maxsize];
	int Path[maxsize][maxsize];
	//初始化 
	for(int i=0;i<G.vexnum;i++){
		for(int j=0;j<G.vexnum;j++){
			A[i][j]=G.Edge[i][j];
			Path[i][j]=-1;
		}
	}
	 
	for(int k=0;k<G.vexnum;k++){
		for(int i=0;i<G.vexnum;i++){
			for(int j=0;j<G.vexnum;j++){
				if(A[i][j]>A[i][k]+A[k][j]){
					A[i][j]=A[i][k]+A[k][j];
					Path[i][j]=k;
				}		
			}
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值