弗洛伊德算法(Floyd-Warshall)

本文介绍了弗洛伊德算法,一种用于寻找加权图中多源点间最短路径的动态规划方法。该算法通过迭代更新路径矩阵,遵循状态转移方程实现。虽然时间复杂度较高为O(n^3),但其简洁性使其依然有应用价值。提供的C++代码示例展示了如何实现并打印最短路径。
摘要由CSDN通过智能技术生成

一、简介

       弗洛伊德算法又名插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法。

       弗洛伊德算法是一种在具有正或负边缘权重但没有负周期的加权图中找到最短路径的算法。算法的单个执行将找到所有顶点对之间的最短路径的长度(加权)。 虽然它不返回路径本身的细节,但是可以通过对算法的简单修改来重建路径。 该算法的版本也可用于查找关系R的传递闭包,或在加权图中所有顶点对之间的最宽路径。

二、核心思路

路径矩阵

        即通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。 

        从图的带权临接A=[a(i,j)] n×n开始,迭代地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

状态转移方程

map[i,j]:=min{map[i,k]+map[k,j],map[i,j]};

        map[i,j]表示i到j的最短距离,K是穷举i,j的断点,map[n,n]初值应该为0,或者按照题目意思来做。

        当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路。

过程

  1. 从任意一条单边路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值