- 博客(21)
- 收藏
- 关注
原创 解决pycharm终端问题: bash: command not found
https://www.jb51.net/article/275782.htm
2023-03-13 19:56:57 1018
翻译 DETR:End-to-End Object Detection with Transformers
在DETR出现之前,大多数目标检测算法都会生成很多预测框,所以需要加上一个后处理操作,如目标检测中很少有端到端的方法,大部分方法最后至少需要一个后处理的操作,也就是nms(非极大值抑制),不论是proposal based方法还是anchor based方法,最后都会生成很多这个预测框。如何去除这些预测框,就是nms要做的事情。正是因为有了nms,所以这个模型在调参上很复杂,即使训练好了一个模型,部署起来也是十分困难的,nms不是所有硬件都支持的,所以一个简单的端到端的目标检测系统一直是大家梦寐以求的。
2023-01-15 14:29:51 259
原创 名词解释Feature Map、anchor、proposal、groudtruth,
在每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起,其中每一个称为一个feature map。在输入层,如果是灰度图片,那就只有一个feature map;如果是彩色图片,一般就是3个feature map(红绿蓝)。层与层之间会有若干个卷积核(kernel),上一层和每个feature map跟每个卷积核做卷积,都会产生下一层的一个feature map。groudtruth相当于正确打标记的数据。2.anchor和proposal。
2023-01-13 15:48:38 1055
原创 读Object Relational Graph with Teacher-Recommended Learning for Video Caption
TRL在原有teacher-enforced learning的训练过程的基础上,配合在大型语料库上预训练的语言模型生成的软目标(可以认为是近义词)进行teacher-recommended learning,在每一步的训练中同时学到了数十倍的知识,很好地缓解了由于文本长尾问题所带来的内容相关词汇训练不足的问题。该方法有效地缓解了长尾问题,提高了标题模型的泛化能力。2)描述文本中的词存在长尾问题(long-tailed problem,大多work是普遍存在的),对内容相关的词训练不充分。
2023-01-06 22:06:03 150
原创 no module的几种解决办法
1.将其文件夹右击找到设置为marked as sourse root。3.在from xxx前面加入yyy.xxx。2.采用sys.append。
2023-01-06 14:19:27 1488
原创 关于代理
透明:服务器知道该次请求使用了代理,也知道请求对应的真实IP。2.https:应用到https协议对应的url中。1.http:应用到http协议对应的url中。高匿:不知道使用了代理,更不知道真实的IP。匿名:知道使用了代理,不知道真实IP。1.突破自身IP访问的限制。2.隐藏自身真实IP。
2022-12-28 18:11:15 100
原创 xpath解析
- 属性定位: //div[@class=‘song’] tag[@attrName='attrValue']-- 索引定位: //div[@class='song']/p[3] 索引是从1开始的。-- //text() 标签中非直系的文本内容(所有的文本内容)--2.调用etree对象中的xpath方法结合着xpath表达式实现标签的定位和内容的捕获。-- /text()获取的是标签中直系的文本内容。-- //:表示的是多个层级,可以表示从任意位置开始定位。-- /:表示的是从根节点开始定位。
2022-12-27 18:46:05 109
原创 python爬虫
---Connection:请求完毕后,是断开连接还是保持连接。----Content-Type:服务器响应回客户端的数据类型。----User-Agent:请求载体的身份标识。作用:模拟浏览器发请求。
2022-12-27 09:37:42 210
原创 bs4进行数据解析
层级选择器:使用命令soup.select('.tang > ul > li > a')[0]或者soup.select('.tang > ul a')[0]即可取出下面画红线部分的内容。soup.find_all('tagName'):返回符合要求的所有标签。属性定位:soup.find('div',class_/id/attr='song')--text/get_text():可以获取某一个标签中所有的文本内容。--- soup.tagName:返回的是文档中第一次出现的tagName对应的标签。
2022-12-26 18:12:53 204
原创 zabbix监控学习
zabbix版本选择:LTS长期维护版本。角度02:网站集群监控(用户访问流程)服务架构:客户端-服务端架构。你们公司监控了什么?
2022-12-23 15:15:58 114
原创 读Hierarchical Modular Network for Video Captioning
视频字幕的目的是根据内容生成自然语言描述,其中表示学习起着至关重要的作用。现有的方法主要是在监督学习框架内开发的,通过将生成的标题与真实文本进行逐字比较,而没有充分利用语言语义。在这项工作中,我们提出了一个分层模块化网络,在生成字幕之前从三个层次连接视频表示和语言语义。特别是,层次结构由:(I)实体层,它突出显示最有可能在标题中提到的对象。(II)谓词层,学习以高亮对象为条件的动作,由标题中的谓词监督。(III)句子级,学习全局语义表示,由整个标题监督。每一层由一个模块实现。
2022-12-21 09:59:08 367
原创 b站刘二大人----逻辑斯蒂回归
特点:属于sigmoid函数之一,由于logistic函数是sigmoid函数中最出名的函数,故很多时候称logistic函数为sigmoid函数。如果要将激活函数改成ReLu函数,则只需改下面两个地方,改第二个地方是因为ReLu函数值可能为0,如果要算交叉熵的话会涉及log0,所以输入y时需要改成sigmoid函数。数据集方面:数据的输入y_data由2.0,4.0,6.0变成0,0,1;---sigmoid函数:①增函数②函数值在0到1之间③饱和函数。作用:将函数值映射到0-1之间。
2022-11-13 11:25:57 166
原创 b站刘二大人-----04反向传播算法
s每调用一次loss函数就动态构建一次计算图,每执行一次backward函数就释放计算图,这也是pytorch的核心竞争力之一。张量tensor可以存标量,向量,矩阵以及高维数据。tensor其实是一个类,它包含数据data和梯度grad。
2022-11-10 22:24:02 311
转载 b站刘二大人----梯度下降法
其存在局部最优点。梯度下降法是无法避免局部最优的,但是为什么常用梯度下降法呢,因为在深度学习中局部最优点是比较少,而深度学习更需要解决的是鞍点问题。可以认为梯度为0的点.如下所示。当梯度下降法遇到鞍点的时候,它是无法迭代的。
2022-11-10 18:45:19 185
原创 08线性回归和基础优化算法
因为计算梯度是很贵的,它需要对每个损失函数求导,这个损失函数是对所有样本的平均损失,所以求梯度需要对所有样本算一次。小批量随机梯度下降是随机采样b个样本来近似损失,这里的b是批量大小,一个重要的超参数。b太小,则计算量太小,不适合并行来最大利用计算资源,b太大,内存消耗增加,浪费计算。梯度是使得这个函数值增加最快的方向,梯度下降就是通过不断沿着反梯度方向更新参数求解。最常用的是梯度下降,深度学习默认的求解算法是小批量随机梯度下降,它最稳定最简单。超参数:在学习之前,人为指定的值。
2022-11-09 21:44:45 471
转载 07自动求导【动手学深度学习v2】
import torchx=torch.arange(4.0) #创建向量,里面的数值是0 1 2 3print(x)#在计算y关于x的梯度之前,我需要一个地方来存储梯度x_grad = x.requires_grad_(True) #该语句即为告知我需要存储梯度,等价于x=torch.arange(4.0,requires_grad = True)x.grad#即可访问x的梯度,即y关于x的导数放在这里print(x_grad)# #现在来计算yy = 2*torch.dot(x,x)p
2022-11-09 17:51:03 115
原创 anaconda3+cuda11.6+pytorch+pycharm深度学习环境教程
如果你用的是笔记本,产品系列要选对应型号的Notebooks,之后点击搜索、下载,之后就可以双击下载的程序安装了,安装过程简单,不断的下一步即可。我的安装地址D:\NVIDIA\DisplayDriver\522.30\Win11_Win10-DCH_64\International。查看显卡版本命令nvidia-smi,如果出现nvidia-smi‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。使用命令nvidia-smi查看cuda版本是11.8,而用nvcc-V查看是11.6.原因如下。
2022-11-04 22:45:34 1887 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人