名词解释Feature Map、anchor、proposal、groudtruth,

文章介绍了CNN中的特征图概念,每个卷积层的数据以三维形式存在,由多个featuremap组成。FasterR-CNN中的anchor是预测框,proposal则是经过非极大值抑制后的候选框。此外,DETR中的objectqueries作为可训练的嵌入向量,与groundtruth进行匈牙利匹配,用于目标检测的优化。
摘要由CSDN通过智能技术生成

1.feature map

理解CNN中的特征图 feature map_Pengsen Ma的博客-CSDN博客_feature maps

 在每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起,其中每一个称为一个feature map。在输入层,如果是灰度图片,那就只有一个feature map;如果是彩色图片,一般就是3个feature map(红绿蓝)。层与层之间会有若干个卷积核(kernel),上一层和每个feature map跟每个卷积核做卷积,都会产生下一层的一个feature map。
2.anchor和proposal

.卷积神经网络——Faster Rcnn中的anchor和Proposal_helpburn的博客-CSDN博客_anchor proposal3

可以理解为anchor为预测的许多框,其中包括冗余框,而proposal是经过极大抑制处理后留下来的框。

3.groud truth

groudtruth相当于正确打标记的数据

4.learn query

参考:原文链接:https://blog.csdn.net/weixin_45782047/article/details/122990292

在DETR中,object queries的作用类似于基于CNN的目标检测算法中的anchor boxes。它共有N个(N是一个事先设定好的超参,它的值远大于一个图片中的目标数)。N个不同的object queries输入的解码器中便会得到N个decoder output embedding,它们经过最后的MLP得到N个预测结果。不同的N个Object queries保证了N个不同的预测结果,Object queries是一个可以训练的嵌入向量,它通过和ground truth的匈牙利匹配(附件A)来向不同的ground truth进行优化。

 

上图中,每个图都是一个object query在COCO 2017 val set预测出来的框的结果。图中的每个点都是一个框的中心点,绿色表示小框,红色表示横向的大框,蓝色表示纵向的大框。可见每个query都有自己的特点,比如第一个query会一直问左边的小框里是什么,第二个会问中间的大框是什么,等等。我们可以把每个object query看成一个关注于某个区域,某些大小物体的提问者。然后这些提问者就是模型训练出来的提问者,各有所长。


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值