ArcGIS之克里金插值教学

本文来自:GIS科研实验室

基本概念

1.什么是克里金插值?

克里金插值又称空间局部插值法,是以半变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。南非矿产工程师D.R.Krige在寻找金矿时首次运用这种方法,法国著名统计学家G.Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金方法。——引自《地理信息系统空间分析实验教程》

2.克里金插值的适用条件?

区域化变量要存在空间相关性,即半变异函数和结构分析的结果表明区域化变量存在空间相关性。

3.克里金插值需要注意的点?

  • 数据应符合前提假设。例如,普通克里金要求数据变化呈正态分布。

  • 数据应尽量充分,样本数尽量大于80,每一种距离间隔分类中的样本对数尽量多余10对。

  • 在具体建模过程中,很多参数是可调的,且每个参数对结果的影响不同。

  • 当数据足够多时,各种插值方法的效果基本相同。(我理解的数据足够多,是指数据量在500以上)

4.克里金方法的分类?

普通克里金、简单克里金、泛克里金、协同克里金、对数正态克里金、指示克里金、概率克里金和析取克里金。

下面我将以普通克里金为例,进行石家庄主城区住宅价格的克里金插值教学。普通克里金是区域化变量的线性估计,它假设数据变化呈正态分布,认为区域化变量的期望值是未知的常量。插值过程类似于加权滑动平均,权重值的确定来自于空间数据分析。

1.首先打开地统计工具条.

右键ArcGIS工具条,勾选Geostatistical Analyst模块。

图1

2.首先判断数据是否呈正态分布,如果不是,对数据进行log变换。判断数据是否呈正态分布的方法有很多种,例如:直方图和正态QQ图。我们以直方图为例进行判断。选择Geostatistical Analyst—探索数据—直方图。怎么看数据是否呈正态分布呢?在直方图提供的汇总统计数据中,如果数据服从正态分布,则平均值与中值类似,偏度应接近零,并且峰度应接近 3。如果数据高度偏斜,可选择对数据进行变换,看是否可以使数据更接近正态分布。

图2

我们这里的数据看起来就不是很正态,所以我们可以对数据进行log变换。选择变换—log就可以了。这下看起来就像是正态分布了,符合原假设。

图3

3.下面对数据进行趋势面分析。选择Geostatistical Analyst—探索数据—趋势分析。

图4

4.我们可以看到在x和y方向存在明显的二阶趋势,注意在做克里金分析的时候剔除,如果你的数据在这里面是平的,并没有像示例数据这样的曲线,就不需要剔除二阶趋势(后面会讲到)

图5

还有一点需要注意,在做趋势分析的时候,你的图层和属性一定是你要分析文件的图层和属性!!!

图6

5.前期的分析工作做完了。这一部开始进行克里金插值。选择Geostatistical Analyst—地统计向导。

图7

6.选择地统计方法中的克里金法/协同克里金法,然后设置好源数据集和数据字段,点击下一步。

图8

7.这里选择使用平均值。

图9

8.这一步中,克里金法类型选择普通克里金,输出表面类型选择预测。由于我们在前面的分析中发现原始数据并不呈正态分布,只有当数据进行log变换后才呈正态分布,因此这里的变换类型选择log。还有就是在趋势分析中,我们发现数据存在二阶趋势,因此这里趋势的移除阶数选择二次。

图10

9.这一步不用管,我们保持默认值就OK。

图11

10.这一步是半变异函数的设置,如果你会用GS+软件,可以根据GS+软件的计算结果来修改相关参数,如果不会你就按照我的设置来就可以了,因为我曾经比较过GS+软件计算的参数和ArcGIS自己计算的参数,结果是ArcGIS自己计算的参数效果会比较好一点。对于这一步参数的设置,我的建议是,除了各向异性选择True(各项异性就是说你的数据在各个方向的分布趋势都是不相同的,如果是近似相同的,那么此项就选择fasle),其余保持默认设置就可以了。

图12

11.下一步不用管,保持默认设置就好。

图13

12.下一步就是模型的相关参数,也是判断模型拟合度是否良好的标准。符合以下标准的模型是最优的:标准平均值最接近于0,均方根预测误差最小,平均标准误差最接近与均方根预测误差,标准均方根预测误差最接近于1。

图14

13.生成的克里金插值图如下。

图15

14.下面我们对这幅图进行美化。首先将该图裁剪至研究范围内。右键图层—属性—范围—将范围设置为(研究区域的范围,本文为矩形范围主城4区(区县,GK))

图16

15.然后就变成这样了。

图17

16.右键图层—属性—数据框—裁剪选项—裁剪至形状—指定形状—要素的轮廓—选择研究区域图层(本文为主城4区(区县,GK))

图18

17.点击应用后,图层就会变成如下所示的样子。

图19

18.最后可以在符号系统中选择自己喜欢的色带,并加上一些特效。

树谷资料库资源大全(4月19日更新)

树谷课堂-汇总

### ArcGIS 空间插值方法教程 在地理信息系统 (GIS) 领域,空间插值是一种重要的技术手段,用于估计未知位置的数据值。以下是基于 ArcGIS 的空间插值方法的具体实现过程。 #### 插值工具概述 ArcGIS 提供了一个强大的插值工具箱,其中包含了多种确定性和地质统计学插值方法。这些方法可以根据已知采样点生成连续表面,从而帮助用户更好地理解空间现象的分布特征[^1]。 #### 常见插值方法介绍 - **反距离加权插值 (IDW)** IDW 是一种简单有效的插值算法,其核心思想是以目标点到已知样本点的距离作为权重因子进行计算。具体而言,离目标点越近的样本点对其影响越大。这种方法适用于局部变化较为平缓的现象[^4]。 - **克里金插值 (Kriging)** Kriging 属于地质统计学插值方法之一,能够考虑数据的空间自相关特性并提供预测误差评估功能。相比其他传统方法,它具有更高的精度和灵活性。 #### 实现步骤详解 以下将以 IDW 插值为例展示如何通过 ArcGIS 创建栅格空间插值模型: ##### 数据准备阶段 确保所有输入矢量文件均已加载至当前地图文档中,并确认属性表中含有待分析的目标变量列名(如 AQI 字段)。如果尚未完成此操作,则需先执行“Add Data”命令导入相应 Shapefile 或 Feature Class 文件[^2]。 ##### 启动地统计向导 转至顶部菜单栏下的【Analysis】选项卡,在右侧找到名为 “Geostatistical Wizard”的按钮启动交互式对话框窗口[^3]。 ##### 参数设置环节 1. 在第一步界面上方列表区域选择合适的插值方式——这里我们指定为 Inverse Distance Weighted; 2. 接下来切换到底部字段配置区,挑选代表测量数值的那个特定项(即上述提到过的 AQI 列); 3. 进入第二步之后会看到更多高级设定可供调整优化,默认情况下建议保留初始推荐值不变;不过也可以手动修改某些关键参数比如 Power exponent 来观察效果差异。 ##### 输出成果管理 最后一步便是定义最终输出路径以及命名保存下来的 TIFF/IMG 类型影像图层对象了。完成后点击 Finish 即可等待软件后台处理完毕呈现可视化结果图表。 ```python import arcpy # 设置工作环境 arcpy.env.workspace = r"C:\path\to\your\data" # 定义输入要素类及字段名称 input_features = "sample_points.shp" z_field = "AQI" # 执行 IDW 工具 output_raster = r"C:\path\to\output\raster.tif" power_value = 2 cell_size = 50 arcpy.gp.Idw_sa(input_features, z_field, output_raster, cell_size, power=power_value) ``` 以上脚本展示了如何借助 Python 脚本来自动化调用 IDW 插值流程,方便批量作业或者集成进更大规模项目当中去。 ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值