机器学习-KNN算法原理 && Spark实现

本文介绍了KNN(K近邻)算法的基本原理和流程,包括数据预处理、距离计算、K个最近邻的选择以及分类决策。讨论了KNN算法的优缺点,并提供了Spark环境下KNN的实现,包括数据下载和样例代码链接,帮助读者理解和应用KNN算法。
摘要由CSDN通过智能技术生成

不懂算法的数据开发者不是一个好的算法工程师,还记得研究生时候,导师讲过的一些数据挖掘算法,颇有兴趣,但是无奈工作后接触少了,数据工程师的鄙视链,模型>实时>离线数仓>ETL工程师>BI工程师(不喜勿喷哈),现在做的工作主要是离线数仓,当然前期也做过一些ETL的工作,为了职业的长远发展,拓宽自己的技术边界,有必要逐步深入实时和模型,所以从本篇文章开始,也是列个FLAG,深入学习实时和模型部分。

改变自己,从提升自己不擅长领域的事情开始。

1. KNN - K近邻算法简介

首先,KNN是一种分类算法,有监督的机器学习,将训练集的类别打标签,当测试对象和训练对象完全匹配时候,就可以对其进行分类,但是测试对象与训练对象的多个类,如何匹配呢,前面可以判别是否测试对象术语某个训练对象,但是如果是多个训练对象类,那如何解决这种问题呢,所以就有了KNN,KNN是通过测量不同特征值之间的距离进行分类。它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别

file KNN算法的核心思想是,如果一个样本在特征

基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip 基于逻辑回归的鸢尾花二分类实验python源码+数据集+详细注释.zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值