考研:数二

初等数学

平方根

√ ̄是算数平方根,一定>=0
x x x为负时, x x x x \sqrt{x} x = x \sqrt{x} x 2

等式两边都有xn的因子,不要轻易约分xn,因为这样丢失了0根,被除数不能为零
尽量以等式左右相减等0来计算

使 f(x)=0 的 x0 叫做函数 y=f(x) 的零点

法线斜率=-1/切线斜率

三角函数

cos2 θ \theta θ=cos2 θ \theta θ-sin2 θ \theta θ
华里士公式(点火公式)
在这里插入图片描述
cotx=1/tanx
降幂:cos2x=(1+cos2x)/2
sin2x=(1-cos2x)/2
在这里插入图片描述
椭圆方程
在这里插入图片描述
S椭圆=abπ

对数

lnx+lny=lnxy

高等数学

极限

0/0或 ∞ \infty / ∞ \infty 型极限非零因子可以单独求极限,直接代入x0

f(x)=g(x) ⟹ \Longrightarrow limf(x)=limg(x)

数列极限

单调有界必收敛
求和极限:1、夹逼
2、定积分 凑1/n,i/n
在这里插入图片描述

无穷小

无穷小四则运算:加减法中,低阶吸收高阶。乘除正常运算

无穷大四则运算:加减法中,高阶吸收低阶。乘除正常运算

无穷小代换是0/0也可以是 ∞ \infty / ∞ \infty

lim f(x)g(x)=lim eg(x)lnf(x),计算lim g(x)lnf(x),不要忘记将结果代入e

等价无穷小

在这里插入图片描述

常用的等价无穷小,类似sinx~x,条件是x->0
但如果sinf(x)的f(x)->0也可用于等价,
如x->0 时,x2->0,将x2看成x, sinx2~x2
在这里插入图片描述
次方也可等价无穷小替换,如ln2(1+2x)~(2x)2

高阶,同阶,低阶在这里插入图片描述

x—>0看低阶项系数比,(常数项c是x的零阶项,不能无视);x-> ∞ \infty 看高阶项系数比

极限有理运算

前提limf(x)=A,limg(x)=B,A、B都存在,A、B可以后验证
limf(x)+g(x)=limf(x)+lim g(x)

洛必达使用条件

在这里插入图片描述

求极限

在这里插入图片描述

间断点

考虑间断点时,不能约分,如x+1/x2-1,求极限时可以约分lim (1/x-1)

导数

求导

求y=f(x) 在某点处的导数,这时一般选用定义法;如果我们求函数f(x)在区间 [a,b]内的导数那我们可以使用公式法直接求导
在这里插入图片描述
u(x)v(x)t(x)对x求导:u’vt+uv’t+uvt’

高阶导数

莱布尼兹公式
在这里插入图片描述
排列组合A C
在这里插入图片描述
在这里插入图片描述

微分中值定理及导数应用

泰勒麦克劳林

求极限遇见sinx、cosx就泰勒展开
在这里插入图片描述
o((cx)n)=o(xn) 例:o((2x)2)=o(x2)
o(xn),在x->0的极限中可以无视,例如 l i m x − > 0 \underset{x->0}{lim} x>0limx2+0(x2)/x,x->0时看小阶,0(x2)是比x2高阶无穷小,即阶数比2大,所以可以无视
也可有理运算来理解, l i m x − > 0 \underset{x->0}{lim} x>0limx2+0(x2)/x= l i m x − > 0 \underset{x->0}{lim} x>0limx2/x+ l i m x − > 0 \underset{x->0}{lim} x>0limo(x2)/x,而 l i m x − > 0 \underset{x->0}{lim} x>0limo(x2)/x=0
xo(xn)=o(xn+1)

渐近线

铅直渐近线,找间断点,例如分母为零的点

斜渐近线:当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以a=0时无斜渐近线,有水平渐近线
水平渐近线与斜渐近线冲突,一函数只存着两者其中一个

曲率

表明曲线在某一点的弯曲程度的数值
在这里插入图片描述
曲率是在某点的弯曲程度

极值

驻点(导数=0的点)不一定是极值点,如y=|x|;不可导的点可能是极值点,如x3
所以求极值点,驻点与不可导点都要考虑
极值第一充分条件:x0去心邻域可导,且f’(x0)=0
或f(x)在x0连续(用于非可导点)

最值

求极值,比极值大小,还有区间[a,b]的端点值f(a)、f(b)大小
在这里插入图片描述

凹凸性

在这里插入图片描述

在这里插入图片描述

凹凸性和拐点

f’‘(x)>0为凹区间;f’‘(x)<0为凸区间
拐点:y=f(x)在点x0去心邻域二阶可导,左右f’'(x)异号,是个点(x,y),不是x

不定积分

在这里插入图片描述
积分结果除C不能有其他常数项
在这里插入图片描述
严格按3、4来做,不要整体积分

定积分

在这里插入图片描述

第一换元积分法

在这里插入图片描述
φ \varphi φ(x)当成t

f(x)在区间的平均值

在这里插入图片描述

积分上限函数

在这里插入图片描述
积分上限函数在第一类间断点连续
f(x)有界才可积,即使是第一类跳跃间断点,跳跃之后高度不是无穷,微分的底极小,随x增大的面积有限,所以f(x)的积分上限函数不是跳跃的,是连续的
在这里插入图片描述
在这里插入图片描述
3、奇偶性
在这里插入图片描述

换元积分:x=t(x)与t=f(x)上下限变换不一样,只有t=f(x)才能直接把上下限代入算出新的上下限

定积分应用

极坐标一重定积分

对r( θ \theta θ)积分不是面积,对1/2r2( θ \theta θ)积分才是面积,
在这里插入图片描述

在这里插入图片描述
绕y轴体积,若f(x)<0,则|f(x)|
在这里插入图片描述

这里的体积是曲线在[a,b]垂直x轴的面积绕x轴的体积,如下图是sABC类三角形绕x轴旋转的体积,而不是sAB叶形绕x轴旋转的体积
在这里插入图片描述

质心

在这里插入图片描述

反常积分

无界函数的反常积分

在这里插入图片描述
原函数,p=1时,原函数是lnx,发散,p>1时原函数是1/(x-a)p-1,也发散;p<1,如p=1/2时,原函数是(x-a)1/2,在(x-a)->0时收敛

无穷区间上的反常积分

在这里插入图片描述

微分方程

在这里插入图片描述

一阶线性微分方程

在这里插入图片描述
可降阶线性微分方程,运用一阶通解得y’,再求原函数y
单x项保持原样,如x仍是x
在这里插入图片描述

高阶常系数齐次微分方程

在这里插入图片描述
y’‘=r2,y’=r,y=1,c=0

高阶常系数非齐次微分方程

叠加原理:f(x)是有多个ex,分开计算各个ex特解,最后加起来就是特解
在这里插入图片描述
特解:Q(x),如果P(x)是二次则设为ax2+bx+c,是一次则设为ax+b,然后将y*,y*',y*''代入原微分方程,让方程左等于方程右,关键是系数相等,得a、b
非齐次通解:是齐次通解+非齐次特解

高阶常系数齐次微分方程

在这里插入图片描述
cosx与sinx项要么有,要么因为R(x)是0无,不会等于一个常数,因为等于常数意味cosx或sinx是常数,不符合

多元函数微分

在这里插入图片描述
f’1(u,v)与f(u,v)偏导法相同, ∂ \partial f’1/ ∂ \partial x=f’‘11* ∂ \partial u/ ∂ \partial x+f’'12 * ∂ \partial v/ ∂ \partial x

隐函数全微分如xyz=1,求法是对等式两端微分,代入x,y,z的值可得dz

多元函数极值

在这里插入图片描述
在这里插入图片描述

二重积分

在这里插入图片描述

题目给直角坐标就要化极坐标,给极坐标就化直角坐标

极坐标上下限,也是从原点出发,向外划线,r是碰到什么线就是上限; θ \theta θ通过观察区域角度
一般是先积r再积 θ \theta θ ∫ \int f( θ \theta θ)d θ \theta θg(r ) ∫ \int dr
在这里插入图片描述

二重积分有理运算

∫∫[f(x,y)+g(x,y)]dxdy= ∫∫f(x,y)dxdy+∫∫g(x,y)dxdy

累次积分 二重积分计算顺序

在这里插入图片描述
这是正规二重积分

但我们计算都是将二重积分化为累次积分计算

在这里插入图片描述
对于y积分时,x的项相当于常数,因此可以提到前面,x与y可分别在前后积分计算
在这里插入图片描述

前面的积分可以直接计算当后面积分的常数,后面积分可以直接计算当前面积分的被积因子
内层积分上下限不含外层变量,则可在不交换积分次序的情况下先算外层的再算内层的积分在这里插入图片描述

二重积分轮换对称性

如果积分区域关于y=x对称
在这里插入图片描述

二重积分1

∫∫1dxdy就是积分区域的面积

线性代数

行列式

代数余子式:(-1)i+jMij
行列式展开才有aij(-1)i+jMij
在这里插入图片描述

矩阵

在这里插入图片描述

伴随矩阵

在这里插入图片描述
顺序是AT的相应aij的代数余子式,而不是A的
在这里插入图片描述
n阶矩阵 ||A|E|=|A|n (E主对角线都是|A|) 因为AA*=|A|E 所以 |AA*|=|A|n
若A可逆,则r(AB)=r(BA)=r(B)

转置矩阵

r(ATA)=r(A)

等价矩阵

A≅B 则r(A)=r(B)

向量

向量默认是列向量
在这里插入图片描述

在这里插入图片描述

非齐次:线性表示
齐次:线性相关,线性无关
在这里插入图片描述
线性相关说明至少有一个向量能被其它向量表示,这个向量是多余的
线性相关 ⟹ \Longrightarrow r(A)<n(n是向量数)

m*n矩阵A,r(A) ≤ \le min{n,m},若m<n,即方程比未知数少,则A必线性相关

n个n维向量x1,x2,x3,…xn线性无关 ⟺ \Longleftrightarrow (x1,x2,x3,…xn)可逆

整体线性无关 ⟹ \Longrightarrow 部分线性无关
部分线性相关 ⟹ \Longrightarrow 整体线性相关
反之都不成立

方程组整体无关,加维度的延伸组也无关

非零向量 α \alpha α1 α \alpha α2 α \alpha αn两两正交 ⟹ \Longrightarrow α \alpha α1 α \alpha α2 α \alpha αn线性无关

向量组

向量组的秩与矩阵的秩在意义上是不同的,向量组的秩是极大线性无关组的向量个数
但定理3.10三秩相等使其数值上相同

一个向量组I能被另一个向量组II线性表示 ⟹ \Longrightarrow r(I) ≤ \le r(II)

线性方程组

行是约束条件,列是未知数;行少了,约束少了,未知数的解自然多

齐次线性方程组

在这里插入图片描述
线性方程组的向量形式和矩阵形式是不一样的
线性方程组的向量形式:
在这里插入图片描述
线性方程组的矩阵形式:
Ax=0

线性方程组,向量,矩阵:
在这里插入图片描述
blog.csdnimg.cn/8158bac6adfe49889210a613bcbe2654.png#pic_center)

向量组线性相关

本质是约束条件少了,自由变量多了,有垃圾向量能被其他向量表示

向量组 α \alpha α1 α \alpha α2 α \alpha αn线性相关 ⟹ \Longrightarrow 对应的齐次方程组有非零解 ⟹ \Longrightarrow r(A)<n ⟹ \Longrightarrow |A|=0

齐次方程组Ax=0有非零解 ⟹ \Longrightarrow r(A)<n,非零解有无数个,但线性无关的非零解有n-r个,,这n-r个非零解即基础解系

基础解系与通解

汤家凤30:00
Ax=0
通过行变换化为行最简矩阵,主元为约束变量,非主元为自由变量
每行的主元可以都由相同的非主元表示,几个非主元就几个解向量,非主元线性无关,方程组的基础解系是一个,包括n-r个解向量,基础解系每个向量一个非主元是1,其余非主元是0
在这里插入图片描述
x3,x4就是通解的k1,k2,k1(1,-2,1,0)T+k2(1,-2,1,0)T就是通解
(1,-2,1,0)T,(1,-2,1,0)T就是基础解系

非齐次线性方程组

Ax=b
有解说明b可由A线性表示,说明b是向量组[A,b]的垃圾向量,可以扔掉,说明[A,b]的极大线性无关组不包括b,而向量组的秩是极大线性无关向量的个数,不包括b,则r[A,b]=r(A)
无解说明b不能被A线性表示,说明在向量组[A|b]中b不是多余的,说明r(A|b)=r(A)+1
通解是

解的情况

齐次: r(A)=n,有零解
r(A)<n,有无数解
非齐次: r(A|b)=r(A)=n有唯一解
r(A|b)=r(A)<n有无数解
r(A|b)=r(A)+1 无解
在这里插入图片描述
通解是齐次通解加非齐次特解,非齐次特解是让自由变量都为零

为什么n-R(A)=线性无关解的个数。抛开线性代数,我们都知道n个独立方程确定n个未知数。那么对于只有R(A)个独立方程,却又n个未知数时,只能确定R(A)个关系,既这R(A)个未知数可以由剩下的n-R(A)个未知数表示。所以剩下的n-R(A)个未知数是“自由”的,可以取任意值,即可以组成n-R(A)个线性无关解向量。所以n-R(A)=线性无关解的个数。 作者:_彩虹_音爆 https://www.bilibili.com/read/cv25382007/ 出处:bilibili

系数矩阵的秩实际上是独立方程组的个数(其他的n-r个方程可以由n个方程线性表示),我们知道,有r个独立的方程,但是却又有x1~xn共n个未知数,那么就意味着存在n-r个自由变量,我们称其为没有约束的解,那么这些解就张成了n-r维的空间,那么刚好可以由n-r个线性无关的向量来表示这个n-r维空间,使得方程成立,那么这n-r个线性无关的解就是所谓的基础解系。
https://www.bilibili.com/video/BV1yt4y1c7ip/?spm_id_from=333.337.search-card.all.click&vd_source=b54d2251d23939ddea4638d6a34250d0

此处以一个3*5的系数矩阵为例,不妨设其秩为3,则它的自由变量个数应为5-3=2,设为x1,x2,由于自由变化,二者取值都能从负无穷变化到正无穷,显然这构成了一个二维平面。若我们想要将这个二维平面表达出来,通常取0 1,1 0,这相当于基,可以看出,只要是取两个线性无关的向量,就可以表达出这个二维平面,否则则无法表达出这个平面,这就是为什么这n-r(A)个自由变量必须线性无关。推广到S维也同理。
https://www.zhihu.com/question/278559673/answer/2985973250

特征值和特征向量

Ax= λ \lambda λx
//A是n阶矩阵 λ \lambda λ是A的一个特征值 x是 λ \lambda λ的一个特征向量
⟹ \Longrightarrow λ \lambda λx-Ax=0
⟹ \Longrightarrow ( λ \lambda λE-A)x=0
因为x ≠ 0 \not=0 =0,即齐次线性方程组有非零解,即r( λ \lambda λE-A)<n,
所以| λ \lambda λE-A|=0 所以 λ \lambda λ由此特征方程得出
解得的一个 λ \lambda λi,代入( λ \lambda λiE-A)x=0得非零解x,x有无穷个;而特征向量要求是线性无关的解,即通解
//n重根特征值的特征向量不一定是n个
在这里插入图片描述
A: λ \lambda λ
f(A):f( λ \lambda λ)

相似矩阵

A~B ⟺ \Longleftrightarrow 每个特征值的重数=该特征值线性无关的特征向量个数
即n-r( λ \lambda λiE-A)
A~ Λ \Lambda Λ
A可相似对角化 Λ \Lambda Λ ⟺ \Longleftrightarrow A有n个线性无关的特征向量
//n阶矩阵有n个特征值,特征向量<=n
//定理5.1 不同特征值的特征向量,线性无关
//要相似对角化,相同特征值的特征向量也要线性无关
相似对角化 Λ \Lambda Λ ⟺ \Longleftrightarrow 定理5.4 特征值 λ \lambda λi是n重则 λ \lambda λi有n个线性无关的特征向量,即( λ \lambda λiE-A)x=0有n个通解

下面是相似对角化定理5.4 推导:
定理3.2 推论1 特征向量xi,组成的向量组,因为线性无关,所以向量组的行最简行列式n个非零行
所以r(x1,x2,x3,…xn)=n,|x1,x2,x3,…xn|=0
P=(x1,x2,x3,…xn),则P可逆
则AP=(Ax1,Ax2,Ax3,…Axn),因为每一列都有Axi= λ \lambda λixi,所以
AP=(Ax1,Ax2,Ax3,…Axn)=( λ \lambda λ1x1, λ \lambda λ2x2, λ \lambda λ3x3,… λ \lambda λnxn)=

P就是特征向量组,组中特征向量的顺序就是对角阵中特征值的顺序

非零矩阵A的特征值不可能全零,因为全零则相似矩阵为零矩阵,r(B)=0,则r(A)=0冲突

实对称矩阵(正交单位化)

两个非实对称矩阵相似只有必要条件,没有充分条件,证明两一般矩阵相似用必要条件排除
在这里插入图片描述

两个实对称矩阵相似有充要条件:
1、相同特征多项式| λ \lambda λE-A|

2、相同特征值

特征向量x1,x2,x3,…xn相互正交(内积为零,两者九十度) ⟹ \Longrightarrow x1,x2,x3,…xn线性无关 (反过来不行)
定理 5.6 实对称矩阵不同特征值对应的特征向量相互正交(相同特征值的特征向量不一定相互正交)

问:既然实对称矩阵可以按普通矩阵的方式求对角阵,为什么还要正交单位化来求对角阵呢?
答:是为了让特征向量组成为正交矩阵,正交单位化是为二次型服务的,而二次型标准化必须要求正交单位化

向量正交:向量内积为零
正交矩阵:ATA=E ⟺ \Longleftrightarrow 特征向量x1,x2,x3,…xn两两正交且规范(是单位向量)
在这里插入图片描述

实对称矩阵得出特征向量组后要正交单位化,得出特征向量组的正交单位矩阵Q,Q就是更规范的P,因为P-1AP= Λ \Lambda Λ,所以Q-1AQ= Λ \Lambda Λ,所以Q-TAQ= Λ \Lambda Λ
在这里插入图片描述

二次型

二次型转化标准形,形式上是为了让对称矩阵转化为对角矩阵
二次型: f(x1,x2,x3)=xTAx

配方法

最后一个平方项一般是单独的x32

f(x1,x2,x3)=x21+x22+x23通过配方得到f(y1,y2,y3)=c1y21+c2y22+c3y23
通过y=cx得到x=Cy,C一定是可逆矩阵
c1,c2,c3,组成标准形

xTAx经过x=CY= (CY)TA(CY)=yT(CTAC)y
配方法得到的标准型只要求C可逆,不唯一,不一定是特征值的标准形

正交变换法

二次型的标准型有多个,只有一个是正交变换得到的,即此时x=cy的c矩阵为正交阵 且称此变换为正交变换,只有正交变换得到的标准型是以二次型对应矩阵的特征值为系数的
在这里插入图片描述
C与配方法不同,是唯一的,C是特征向量通过正交单位化得来的,C是正交矩阵
(正交矩阵见p239)

正交单位化后的特征向量仍是对应特征值的特征向量

合同

相似对角化不需要正交单位化,之所以正交单位化是为了保证对阵矩阵和由其特征值构成的对角矩阵合同
A是通过合同变换CTAC= Λ \Lambda Λ
证明A合同B
1、实对称矩阵A相似与B,则A一定也合同与B,因为Q-1AQ=B的Q是正交矩阵,而正交矩阵有Q-1=QT
2、若实对称矩阵A不相似B,或A不是实对称矩阵,则若正负惯性指数相同也证明A合同B
在这里插入图片描述

正定二次型

在这里插入图片描述
全部顺序主子式>0 ⟺ \Longleftrightarrow 正惯=n

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值