PyTorch学习笔记

1 PyTorch简介与安装

在这里插入图片描述

PyTorch是一个基于 Numpy 的科学计算包,向它的使用者提供了两大功能:

  • 作为 Numpy 的替代者,向用户提供使用 GPU 强大功能的能力;
  • 做为一款深度学习的平台, 向用户提供最大的灵活性和速度。

官网下载

在这里插入图片描述

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117

具体可根据个人设备的配置来选择,生成自己的安装命令

检查pytorch是否安装成功

import torch # 如果pytorch安装成功即可导入
print(torch.__version__) # 查看torch的版本
print(torch.cuda.is_available()) # 查看CUDA是否可用
print(torch.cuda.device_count()) # 查看可用的CUDA数量
print(torch.version.cuda) # 查看CUDA的版本号

2 PyTorch的基本操作

Tensor:即张量,其概念类似于 Numpy 中的 ndarray 数据结构,最大的区别在于 Tensor可以利用 GPU 的加速功能。(PyTorch 之所以能使用 GPU 加速,是因为张量。)

我们使用Pytorch的时候,常规步骤是先将torch引用进来, 如下所示:

# 加上该语句后,即使在python2.X,使用print就得像python3.X那样加括号使用
from __future__ import print_function
import torch

2.1 张量的创建

  1. 创建一个没有初始化的张量
a = torch.empty(5, 3)
print(a)
tensor([[2.4835e+27, 2.5428e+30, 1.0877e-19],
        [1.5163e+23, 2.2012e+12, 3.7899e+22],
        [5.2480e+05, 1.0175e+31, 9.7056e+24],
        [1.6283e+32, 3.7913e+22, 3.9653e+28],
        [1.0876e-19, 6.2027e+26, 2.3685e+21]])
  1. 创建一个有初始化的张量
b = torch.rand(5, 3) 
# torch.rand()返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数
# torch.randn()返回一个张量,包含了从标准正态分布(均值为0,差为1,即高斯白噪声)中抽取的一组随机数。
# torch.randint(参数1,参数2) 左闭右开
# random.randint(参数1,参数2) 左闭右闭


print(b)
tensor([[0.1368, 0.8070, 0.4567],
        [0.4369, 0.8278, 0.5552],
        [0.6848, 0.4473, 0.1031],
        [0.5308, 0.9194, 0.2761],
        [0.0484, 0.9941, 0.2227]])

对比有无初始化的矩阵:当声明一个未初始化的矩阵时,它本身不包含任何确切的值.。当创建一个未初始化的矩阵时,分配给矩阵的内存中有什么数值就赋值给了这个矩阵,本质上是毫无意义的数据。

  1. 创建一个全零张量并可指定数据元素的类型为long
c = torch.zeros(5, 3, dtype=torch.long)
print(c)
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

同样地,还有 torch.ones()

  1. 直接通过数据创建张量
d = torch.tensor([2.5, 3.5])
print(d) # tensor([2.5000, 3.3000])
  1. 使用 numpy 中的数组创建 tensor
torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
  1. 通过已有的一个张量创建指定尺寸的新张量
x = d.new_ones(5, 3, dtype=torch.double)
print(x)
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
  1. 通过已有的一个张量创建相同尺寸的新张量
# 利用randn_like方法得到相同张量尺寸的一个新张量, 并且采用随机初始化来对其赋值
y = torch.randn_like(x, dtype=torch.float)
print(y)
tensor([[-0.1497, -0.5832, -0.3805],
        [ 0.9001,  2.0637,  1.3299],
        [-0.8813, -0.6579, -0.9135],
        [-0.1374,  0.1000, -0.9343],
        [-1.1278, -0.9140, -1.5910]])

2.2 张量的属性

  1. 获取张量的大小
print(y.size()) # torch.Size([5, 3])

torch.Size 函数本质上返回的是一个tuple,因此它支持一切元组的操作。

  1. 改变张量的形状
i = torch.randn(4, 4)
# tensor.view()操作需要保证数据元素的总数量不变
j = i.view(16)
# -1代表自动匹配个数
k = i.view(-1, 8)
print(i.size(), j.size(), k.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

2.3 张量的运算

  1. 加法操作

第一种加法操作

print(x + y)

第二种加法操作

print(torch.add(x, y))

第三种加法操作

# 提前设定一个空的张量
result = torch.empty(5, 3)
# 将空的张量作为加法的结果存储张量
torch.add(x, y, out=result)
print(result)

第四种加法方式

# 原地置换
y.add_(x)
print(y)

注意:所有 in-place 的操作函数都有一个下划线的后缀,比如 x.copy_(y),x.add_(y),都会直接改变 x 的值

2.4 获取张量元素

  1. 取出元素

如果张量中只有一个元素,可以用 .item() 将值取出,作为一个 python number(真实值)

n = torch.randn(1)
print(n)
print(n.item())
tensor([-0.3531])
-0.3530771732330322
  1. 切片

用类似于Numpy 的方式对张量进行操作:

print(x[:, 1])
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

2.5 类型转换

Torch Tensor和Numpy array的转换

a = torch.ones(5)
print(a) # tensor([1., 1., 1., 1., 1.])
  1. 将 Torch Tensor 转换为 Numpy array
b = a.numpy()
print(b) # [1. 1. 1. 1. 1.]

对其中一个进行加法操作,另一个也随之被改变

a.add_(1)
print(a)
# tensor([2., 2., 2., 2., 2.])
print(b)
# [2. 2. 2. 2. 2.]
  1. 将 Numpy array 转换为 Torch Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(a) 
# [1. 1. 1. 1. 1.]
print(b)
# tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
np.add(a, 1, out=a)
print(a)
# [2. 2. 2. 2. 2.]
print(b)
# tensor([2., 2., 2., 2., 2.], dtype=torch.float64)

注意:

  • 所有在CPU上的Tensors,除了CharTensor,都可以转换为Numpy array并可以反向转换
  • Torch Tensor 和 Numpy array共享底层的内存空间,因此改变其中一个的值,另一个也会随之被改变。

关于Cuda Tensor: Tensors可以用.to()方法来将其移动到任意设备上。

  • GPU:“cuda”
  • CPU:“cpu”
x = torch.zeros(5, 3, dtype=torch.long)
# 如果服务器上已经安装了GPU和CUDA
if torch.cuda.is_available():
    # 定义一个设备对象, 这里指定成CUDA, 即使用GPU
    device = torch.device("cuda")
    # 直接在GPU上创建一个Tensor
    y = torch.ones_like(x, device=device)
    # 将在CPU上面的x张量移动到GPU上面
    x = x.to(device)
    # x和y都在GPU上面, 才能支持加法运算
    z = x + y
    # 此处的张量z在GPU上面
    print(z)
    # 也可以将z转移到CPU上面, 并同时指定张量元素的数据类型
    print(z.to("cpu", torch.double))
tensor([[1, 1, 1],
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1]], device='cuda:0')
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)

3 Pytorch中的 autograd

在整个 Pytorch 框架中,所有的神经网络本质上都是一个autograd package(自动求导工具包),它提供了一个对 Tensors 上所有的操作进行自动微分的功能。

3.1 torch.Tensor 介绍

torch.Tensor 是整个 package 中的核心类

  • 如果将属性.requires_grad 设置为 True,它将追踪在这个类上定义的所有操作。
  • 当代码要进行反向传播的时候,直接调用 .backward() 就可以自动计算所有的梯度(前提是属性.requires_grad 设置为 True)。
  • 在这个Tensor上的所有梯度将被累加进属性 .grad 中。
  • 如果想终止一个Tensor 在计算图中的追踪回溯(反向传播),只需要执行.detach()就可以将该Tensor从计算图中撤下,在未来的回溯计算中也不会再计算该Tensor。
  • 如果想终止对整个计算图的追踪回溯,也就是不再进行方向传播求导数的过程,也可以采用代码块的方式with torch.no_grad():,这种方式非常适用于对模型进行 预测 的时候,因为预测阶段不再需要对梯度进行计算。

torch.Function是和torch.Tensor 同等重要的一个核心类,

  • torch.Function和Tensor共同构建了一个完整的类, 每一个Tensor拥有一个.grad_fn属性,代表引用了哪个具体的 Function 创建了该Tensor。
  • 如果某个张量Tensor是用户自定义的,则其对应的grad_fn is None。

3.2 torch.Tensor 操作

# 不设置requires_grad
x1 = torch.ones(3, 3)
print(x1)
# 设置requires_grad
x = torch.ones(2, 2, requires_grad=True)
print(x)
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])

tensor([[1., 1.],
        [1., 1.]], requires_grad=True)

在具有 requires_grad=True 的Tensor x 上执行一个加法操作

y = x + 2
print(y)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)

打印 Tensor 的grad_fn 属性:

print(x.grad_fn) # x是我们自定义的
# None
print(y.grad_fn) # y是通过加法计算出来的
# <AddBackward0 object at 0x10db11208>

在Tensor上执行更复杂的操作:

z = y * y * 3
out = z.mean()
print(z, out)
tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)

3.3 梯度Gradients

在Pytorch中,反向传播是依靠 .backward() 实现的。

# y = x+2
# z = z = y * y * 3
out.backward()
print(x.grad)
tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

关于自动求导的属性设置:可以通过设置 .requires_grad=True 来执行自动求导,也可以通过代码块的限制来停止自动求导。

print(x.requires_grad) # True
print((x ** 2).requires_grad) # True

with torch.no_grad():
    print((x ** 2).requires_grad) # False

可以通过.detach() 获得一个新的 Tensor, 拥有相同的内容但不需要自动求导

print(x.requires_grad) # True
y = x.detach()
print(y.requires_grad) # False
print(x.eq(y).all()) # tensor(True)

4 Pytorch的应用

4.1 Pytorch构建神经网络

使用 Pytorch 来构建神经网络,主要的工具都在 torch.nn 包中。nn(Neural
Networks神经网络)依赖于autograd来定义模型,并对其自动求导。

构建神经网络的典型流程:

  • 定义一个拥有可学习参数的神经网络
  • 遍历训练数据集
  • 处理输入数据使其流经神经网络
  • 计算损失值
  • 将网络参数的梯度进行反向传播
  • 以一定的规则更新网络的权重(参数)
  1. 定义一个Pytorch实现的神经网络

4.2 Pytorch构建分类器

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision  # 使用torchvision操作CIFAR10数据集
import torchvision.transforms as transforms

# https://blog.csdn.net/m0_59249046/article/details/126800077
# https://blog.csdn.net/qq_51570094/article/details/123589421

transform = transforms.Compose([  # Compose把多个步骤整合到一起
    # 1.将shape为(H,W,C)的数据维度转变为(C,H,W),其中C表示通道数,H表示高度,W表示宽度。
    # 2. 将输入数据归一化到(0,1)的范围内,其归一化方法为除以255进行缩放
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 训练集
trainSet = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
trainLoader = torch.utils.data.DataLoader(trainSet, batch_size=4, shuffle=True)
# 测试集
testSet = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
testLoader = torch.utils.data.DataLoader(testSet, batch_size=4, shuffle=True)
# 标签值
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 导入画图包和numpy
import matplotlib.pyplot as plt
import numpy as np

# 构建展示图片的函数
def imshow(img):
    img = img / 2 + 0.5 # 主要是为了展示,所以要用到原来的图片。之前标椎化时做了(x-0.5)/0.5
    npimg = img.numpy() 
    # 为什么要转置?
    # 前面ToTensor将图片的维度(H,W,C)转变为(C,H,W),要展示数据,所以要恢复到原来的维度
    plt.imshow(np.transpose(npimg, (1, 2, 0))) # numpy.T低维(一、二维)转置,transpose高维转置
    plt.show()


# 从数据迭代器中读取一张图片
dataiter = iter(trainloader)
images, labels = dataiter.next()

# 展示图片
# make_grid将若干图片合并成一张
imshow(torchvision.utils.make_grid(images))
# 打印标签label
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值