题目:
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
Example:
Input: [1,1,2]
Output:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
解法一:
这道题是之前那道 Permutations 的延伸,由于输入数组有可能出现重复数字,如果按照之前的算法运算,会有重复排列产生,我们要避免重复的产生,在递归函数中要判断前面一个数和当前的数是否相等,如果相等,且其对应的visited中的值为1,当前的数字才能使用(下文中会解释这样做的原因),否则需要跳过,这样就不会产生重复排列了。
class Solution {
public:
vector<vector<int>> permuteUnique(vector<int>& nums) {
vector<vector<int>> res;
vector<int> out, visited(nums.size(), 0);
sort(nums.begin(), nums.end());
permuteUniqueDFS(nums, 0, visited, out, res);
return res;
}
void permuteUniqueDFS(vector<int>& nums, int level, vector<int>& visited, vector<int>& out, vector<vector<int>>& res) {
if (level >= nums.size()) {res.push_back(out); return;}
for (int i = 0; i < nums.size(); ++i) {
if (visited[i] == 1) continue;
if (i > 0 && nums[i] == nums[i - 1] && visited[i - 1] == 0) continue;
visited[i] = 1;
out.push_back(nums[i]);
permuteUniqueDFS(nums, level + 1, visited, out, res);
out.pop_back();
visited[i] = 0;
}
}
};
解法二:
在使用上面的方法的时候,一定要能弄清楚递归函数的for循环中两个if的剪枝的意思。在此之前,首先要弄清楚level的含义,这里由于我们是用数组out来拼排列结果,这里的level其实就是当前已经拼成的个数,其实就是out数组的长度。我们看到,for循环的起始是从0开始的,而本题的解法二,三,四都是用了一个start变量,从而for循环都是从start开始,一定要分清楚start和本解法中的level的区别。由于递归的for都是从0开始,难免会重复遍历到数字,而全排列不能重复使用数字,意思是每个nums中的数字在全排列中只能使用一次(当然这并不妨碍nums中存在重复数字)。不能重复使用数字就靠visited数组来保证,这就是第一个if剪枝的意义所在。关键来看第二个if剪枝的意义,这里说当前数字和前一个数字相同,且前一个数字的visited值为0的时候,必须跳过。这里的前一个数visited值为0,并不代表前一个数字没有被处理过,也可能是递归结束后恢复状态时将visited值重置为0了,实际上就是这种情况,下面打印了一些中间过程的变量值.
level = 0, i = 0 => out: {}
level = 1, i = 0 => out: {1 } skipped 1
level = 1, i = 1 => out: {1 }
level = 2, i = 0 => out: {1 2 } skipped 1
level = 2, i = 1 => out: {1 2 } skipped 1
level = 2, i = 2 => out: {1 2 }
level = 3 => saved {1 2 2}
level = 3, i = 0 => out: {1 2 2 } skipped 1
level = 3, i = 1 => out: {1 2 2 } skipped 1
level = 3, i = 2 => out: {1 2 2 } skipped 1
level = 2, i = 2 => out: {1 2 2 } -> {1 2 } recovered
level = 1, i = 1 => out: {1 2 } -> {1 } recovered
level = 1, i = 2 => out: {1 } skipped 2
level = 0, i = 0 => out: {1 } -> {} recovered
level = 0, i = 1 => out: {}
level = 1, i = 0 => out: {2 }
level = 2, i = 0 => out: {2 1 } skipped 1
level = 2, i = 1 => out: {2 1 } skipped 1
level = 2, i = 2 => out: {2 1 }
level = 3 => saved {1 2 2}
level = 3, i = 0 => out: {2 1 2 } skipped 1
level = 3, i = 1 => out: {2 1 2 } skipped 1
level = 3, i = 2 => out: {2 1 2 } skipped 1
level = 2, i = 2 => out: {2 1 2 } -> {2 1 } recovered
level = 1, i = 0 => out: {2 1 } -> {2 } recovered
level = 1, i = 1 => out: {2 } skipped 1
level = 1, i = 2 => out: {2 }
level = 2, i = 0 => out: {2 2 }
level = 3 => saved {1 2 2}
level = 3, i = 0 => out: {2 2 1 } skipped 1
level = 3, i = 1 => out: {2 2 1 } skipped 1
level = 3, i = 2 => out: {2 2 1 } skipped 1
level = 2, i = 0 => out: {2 2 1 } -> {2 2 } recovered
level = 2, i = 1 => out: {2 2 } skipped 1
level = 2, i = 2 => out: {2 2 } skipped 1
level = 1, i = 2 => out: {2 2 } -> {2 } recovered
level = 0, i = 1 => out: {2 } -> {} recovered
level = 0, i = 2 => out: {} skipped 2
class Solution {
public:
vector<vector<int>> permuteUnique(vector<int>& nums) {
set<vector<int>> res;
permute(nums, 0, res);
return vector<vector<int>> (res.begin(), res.end());
}
void permute(vector<int>& nums, int start, set<vector<int>>& res) {
if (start >= nums.size()) res.insert(nums);
for (int i = start; i < nums.size(); ++i) {
if (i != start && nums[i] == nums[start]) continue;
swap(nums[i], nums[start]);
permute(nums, start + 1, res);
swap(nums[i], nums[start]);
}
}
};