目录
在一个星光摧残的夜晚,蒜头君一颗一颗的数这天上的星星。
蒜头君给在天上巧妙的画了一个直角坐标系,让所有的星星都分布在第一象。天上有 n颗星星,他能知道每一颗星星的坐标和亮度。
现在,蒜头君问自己 q次,每次他问自己每个矩形区域的星星的亮度和是多少(包含边界上的星星)。
输入格式
第一行输入一个整数 n(1≤n≤50000) 表示星星的数量。
接下里 n行,每行输入三个整数 x,y,w(0≤x,y,w≤2000),表示在坐标 (x,y)有一颗亮度为 w 的星星。注意一个点可能有多个星星。
接下来一行输入一个整数 q(1≤q≤50000),表示查询的次数。
接下来 q 行,每行输入四个整数 x1,y1,x2,y2,其中 (x1,y1) 表示查询的矩形的左下角的坐标,(x2,y2)(x2,y2) 表示查询的矩形的右上角的坐标,0≤x1≤x2≤2000,0≤y1≤y2≤2000。
输出格式
对于每一次查询,输出一行一个整数,表示查询的矩形区域内的星星的亮度总和。
Input
5
5 0 6
7 9 7
8 6 13
9 7 1
3 0 19
4
0 8 7 9
0 0 7 10
2 7 10 9
5 4 7 5
Output
7
32
8
0
完整代码如下:
下面是代码的功能解释:
- 首先,代码定义了两个二维数组
a
和b
,用来存储星星的亮度和亮度前缀和。数组的大小是 2005x2005,这是因为题目中给出的星星坐标范围在 1 到 2000 之间。 - 在
main
函数中,首先读入一个整数n
,表示星星的数量。 - 然后,通过一个循环读入每颗星星的坐标
(x, y)
和亮度w
。注意,这里的坐标是从 0 开始计数的,所以在存储到数组a
中时,需要将坐标加 1。 - 接下来,代码使用二维前缀和的方法计算数组
a
的前缀和数组b
。这样,b[i][j]
就存储了从(1, 1)
到(i, j)
的矩形区域内所有星星的亮度和。 - 然后,读入一个整数
q
,表示询问的次数。 - 通过一个循环处理每次询问。对于每次询问,读入一个矩形区域的左上角坐标
(x1, y1)
和右下角坐标(x2, y2)
。同样地,这里的坐标也是从 0 开始计数的,所以在计算时需要加 1。 - 使用前缀和数组
b
计算矩形区域内星星的亮度和。具体地,通过计算b[x2][y2] - b[x1-1][y2] - b[x2][y1-1] + b[x1-1][y1-1]
来得到结果。 - 最后,输出计算结果。
#include <stdio.h>
typedef long long ll;
ll a[2005][2005];
ll b[2005][2005];
int main()
{
ll n,i,j;
scanf("%lld",&n);
ll x,y,w;
while(n--){
scanf("%lld %lld %lld",&x,&y,&w);
a[++x][++y]+=w;
}
for(i=1;i<=2001;i++){
for(j=1;j<=2001;j++){
b[i][j]=a[i][j]+b[i-1][j]+b[i][j-1]-b[i-1][j-1];
}
}
ll q;scanf("%lld",&q);
while(q--)
{
ll x1,x2,y1,y2,ans=0;
scanf("%lld %lld %lld %lld",&x1,&y1,&x2,&y2);
x1++;x2++;y1++;y2++;
ans=b[x2][y2]-b[x1-1][y2]-b[x2][y1-1]+b[x1-1][y1-1];
printf("%lld\n",ans);
}
return 0;
}
代码讲解:
-
数据类型定义:
- 使用
typedef long long ll;
定义了一个新的数据类型名为ll
,它实际上是long long
类型。这使得代码中的数字可以表示更大的范围。
- 使用
-
全局变量声明:
ll a[2005][2005];
和ll b[2005][2005];
声明了两个二维数组,用于存储星星的亮度和及其前缀和。
-
主函数:
- 读取一个整数
n
,表示星星的数量。 - 使用
scanf
函数读取每个星星的坐标和亮度。注意,这里的坐标范围是 1 到 2000,但数组索引从 0 开始,所以在存储到数组a
时,需要将坐标加 1。 - 通过一个双重循环计算前缀和数组
b
。这个循环计算了从(1, 1)
到(i, j)
的矩形区域内所有星星的亮度和。 - 读取一个整数
q
,表示询问的次数。 - 通过一个循环处理每次询问。对于每次询问,读取矩形的左上角和右下角坐标,并使用前缀和数组
b
计算亮度和。 - 使用
printf
函数输出结果。
- 读取一个整数
-
代码逻辑:
- 该代码首先读取星星的数量和每个星星的坐标和亮度。
- 然后,它使用前缀和的方法计算每个矩形区域的星星亮度和。这种方法的核心思想是预先计算每个区域的所有星星的亮度总和,以便在询问时能够快速给出答案。
- 最后,对于每个询问,代码通过简单的减法和加法操作计算出矩形区域的亮度和,并输出结果。
-
用途:
- 这段代码的时间复杂度是 O((n+q)logn),其中 n 是星星的数量,q 是询问的次数。这是因为读入和计算前缀和的时间复杂度是 O(n),处理每次询问的时间复杂度是 O(1),而读入和输出操作的时间复杂度可以忽略不计。因此,这段代码可以高效地处理大量的星星和询问。