多项式

拉格朗日插值

引理:给定 n n n个点 ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) ( x i ≠ x j , (x_1,y_1),(x_2,y_2),...,(x_n,y_n)(x_i\neq x_j, (x1,y1),(x2,y2),...,(xn,yn)(xi=xj, x i ≠ 0 ) x_i\neq 0) xi=0),可以唯一的确定一个 n − 1 n-1 n1次多项式 f ( x ) = ∑ i = 0 n − 1 a i x i f(x)=\sum_{i=0}^{n-1}a_ix^i f(x)=i=0n1aixi

证:将 n n n个点代入多项式 y j = f ( x j ) = ∑ i = 0 n − 1 a i x j i y_j=f(x_j)=\sum_{i=0}^{n-1}a_ix_j^i yj=f(xj)=i=0n1aixji得到一个秩为 n n n的未知量为 a i a_i ai的含有 n n n个方程的非齐次线性方程组,该方程组有唯一解。

拉格朗日插值法:构造函数 g i ( x ) = y i ∏ j ≠ i x − x j x i − x j g_i(x)=y_i\prod_{j\neq i}\frac{x-x_j}{x_i-x_j} gi(x)=yij=ixixjxxj,容易发现 g i ( x i ) = y i , g i ( x j ) = 0 ( j = { { 1 , 2 , . . . , n } − { i } } ) g_i(x_i)=y_i,g_i(x_j)=0(j=\{\{1,2,...,n\}-\{i\}\}) gi(xi)=yi,gi(xj)=0(j={{1,2,...,n}{i}})
f ( x ) = ∑ i = 1 n g i ( x i ) = ∑ i = 1 n y i ∏ j ≠ i x − x j x i − x j f(x)=\sum_{i=1}^ng_i(x_i)=\sum_{i=1}^ny_i\prod_{j\neq i}\frac{x-x_j}{x_i-x_j} f(x)=i=1ngi(xi)=i=1nyij=ixixjxxj
则有 f ( x i ) = y i , ( i = { 1 , 2 , . . . , n } ) f(x_i)=y_i,(i=\{1,2,...,n\}) f(xi)=yi,(i={1,2,...,n}) f ( x ) f(x) f(x)即为所求 n − 1 n-1 n1次多项式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值