Zernike多项式

该文章探讨了光学像差的基本表达式φk(x,y),并介绍了标准化系数Nnm和径向表达式Rnm(ρ)以及弧度表达式Θm(θ)。通过多项式积分和方差,展示了Zernike多项式在光学成像中的正交性和完备性。Zernike多项式被用作图像特征,特别是在像差校正和点扩散函数中,对于图像识别和重建任务具有重要意义。Zernike矩作为一种旋转不变的特征,尽管易受噪声影响,但能有效地捕获图像的关键信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

表达式

φ k ( x , y ) = Z n m ( ρ , θ ) = N n m R n m ( ρ ) Θ m ( θ ) \varphi^k(x,y)=Z_n^m(\rho,\theta)=N_n^mR_n^m(\rho)\Theta_m(\theta)\\ φk(x,y)=Znm(ρ,θ)=NnmRnm(ρ)Θm(θ)
其 中 { ρ = x 2 + y 2    ∈ ( 0 , 1 ) θ = a r c t a n ( y x ) ∈ ( 0 , 2 π ) ∣ Z n m ( ρ , θ ) ∣ ≤ 1 \pmb{其中} \begin{cases} \rho=\sqrt{x^2+y^2} \;\in (0,\quad 1)\\ \theta=arctan(\frac{y}{x}) \in (0,\quad 2\pi)\\ |Z^{m}_n(\rho,\theta)| \le 1 \end{cases} 其中ρ=x2+y2 (0,1)θ=arctan(xy)(0,2π)Znm(ρ,θ)1

  • 标准化系数

N n m = { 2 ( 1 + n ) 1 + σ ⇒ N n m ( π ) 2 ( 1 + n ) π ( 1 + σ ) ⇒ N n m ( 1 ) a n d σ = { 1 , m = 0 0 , m ≠ 0 N_n^m= \begin{cases}\sqrt{\frac{2(1+n)}{1+\sigma}}\Rightarrow N_n^m(\pi)\\ \sqrt{\frac{2(1+n)}{\pi(1+\sigma)}}\Rightarrow N_n^m(1) \end{cases} \quad \pmb{and}\quad \sigma= \begin{cases}1,&m = 0\\ 0,&m\not=0 \end{cases} Nnm=1+σ2(1+n) Nnm(π)π(1+σ)2(1+n) Nnm(1)andandandσ={1,0,m=0m=0

  • 径向表达式

R n m ( ρ ) = ∑ k = 0 n − m 2 ( − 1 ) k ( n − k ) ! k ! ( n + m 2 − k ) ! ( n − m 2 − k ) ! ρ n − 2 k o r R n m ( ρ ) = ∑ k = 0 n − m 2 ( − 1 ) k ( n − k k ) ( n − 2 k n − m 2 − k ) ρ n − 2 k R_n^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}{\frac{(-1)^k(n-k)!}{k!(\frac{n+m}{2}-k)!(\frac{n-m}{2}-k)!}}\rho^{n-2k}\\ \pmb{or}\\ R_n^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}(-1)^k \binom{n-k}{k} \binom{n-2k}{\tfrac{n-m}{2}-k} \rho^{n-2k} Rnm(ρ)=k=02nmk!(2n+mk)!(2nmk)!(1)k(nk)!ρn2korororRnm(ρ)=k=02nm(1)k(knk)(2nmkn2k)ρn2k
其 中    k = n ( n + 1 ) 2 + ∣ m ∣ + { 0 , m > 0 ∧ n ≡ { 0 , 1 } ( m o d 4 ) 0 , m < 0 ∧ n ≡ { 2 , 3 } ( m o d 4 ) 1 , m ≥ 0 ∧ n ≡ { 2 , 3 } ( m o d 4 ) 1 , m ≤ 0 ∧ n ≡ { 0 , 1 } ( m o d 4 ) \pmb{其中}\;k={\frac {n(n+1)}{2}}+|m|+\left\{{\begin{array}{ll}0,&m>0\land n\equiv \{0,1\}{\pmod {4}}\\0,&m<0\land n\equiv \{2,3\}{\pmod {4}}\\1,&m\geq 0\land n\equiv \{2,3\}{\pmod {4}}\\1,&m\leq 0\land n\equiv \{0,1\}{\pmod {4}}\end{array}}\right.\\\\ 其中k=2n(n+1)+m+0,0,1,1,m>0n{0,1}(mod4)m<0n{2,3}(mod4)m0n{2,3}(mod4)m0n{0,1}(mod4)

  • 弧度表达式

Θ m ( θ ) = { cos ⁡ ( ∣ m ∣ θ ) m ≥ 0 sin ⁡ ( ∣ m ∣ θ ) m < 0 \Theta_m(\theta)= \begin{cases} \cos(|m|\theta) &m\geq 0\\ \sin(|m|\theta) &m<0 \end{cases} Θm(θ)={cos(mθ)sin(mθ)m0m<0

  • 多项式积分与方差

N n m ( π ) ⇒ { ∫ 0 2 π ∫ 0 1 Z n m ( ρ , θ ) 2 ⋅ ρ   d ρ   d θ = π V a r ( Z n m ( ρ , θ ) ) unit circle = 1 N_n^m(\pi)\Rightarrow \begin{cases} \int_{0}^{2\pi }\int_{0}^{1}Z_n^m(\rho,\theta)^{2}\cdot \rho \,d\rho \,d\theta =\pi\\ {Var} (Z_n^m(\rho,\theta))_{\text{unit circle}}=1 \end{cases} Nnm(π){02π01Znm(ρ,θ)2ρdρdθ=πVar(Znm(ρ,θ))unit circle=1

应用

光学像差

带像差的点扩散函数

h ( u , v ; ξ , η ) = 1 λ 2 z i 2 ⋅ ∬ − ∞ + ∞ P ( x , y ) ⋅ e j 2 π φ k ( x , y ) λ ⋅ e − j 2 π λ z i [ ( u − M ξ ) x + ( v − M η ) y ]   d x d y h(u,v;\xi,\eta)=\frac{1}{\lambda^2z^2_i}\cdot\iint^{+\infty}_{-\infty}P(x,y)\cdot e^{\frac{j2\pi\varphi^k(x,y)}{\lambda}}\cdot e^{-j\frac{2\pi}{\lambda z_i}[(u-M\xi)x+(v-M\eta)y]}\,dxdy h(u,v;ξ,η)=λ2zi21+P(x,y)eλj2πφk(x,y)ejλzi2π[(uMξ)x+(vMη)y]dxdy

  • 响应 h h h 是从光瞳汇聚到理想像点 ( u = M ξ , v = M η ) (u=M\xi,v=M\eta) (u=Mξ,v=Mη) 球面波产生, z i z_i zi 是出瞳到像面的距离, λ \lambda λ 是光的波长, P P P 是光瞳函数是对于出瞳坐标系 ( x , y ) (x,y) (x,y) 孔径内为 1 1 1 外为 0 0 0

图像特征

一般将图像的几何矩作为特征,将 2 、 3 2、3 23 阶的几何矩归一化,并施加旋转不变性的要求,得到 Hu

  • Hu 是局部拟合,容易受到噪声影响

按泰勒多项式正交化为勒让德多项式的思路,将几何矩正交化为 Zernike 多项式,即 Zernike

  • Zernike 多项式是正交完备基,其主要分量集中在前几项,可以用于当作特征,任何单位圆内的图片可以靠无穷多的 Zernike 多项式表示
  • Zernike 多项式前几项集中了图像的一些特征信息,类似傅里叶变换的频谱承载频率信息,工程上通常取前几项就描述特征

提取图像的 Zernike 特征,可以实现目标识别、重建等任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昊大侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值