表达式
φ
k
(
x
,
y
)
=
Z
n
m
(
ρ
,
θ
)
=
N
n
m
R
n
m
(
ρ
)
Θ
m
(
θ
)
\varphi^k(x,y)=Z_n^m(\rho,\theta)=N_n^mR_n^m(\rho)\Theta_m(\theta)\\
φk(x,y)=Znm(ρ,θ)=NnmRnm(ρ)Θm(θ)
其
中
{
ρ
=
x
2
+
y
2
∈
(
0
,
1
)
θ
=
a
r
c
t
a
n
(
y
x
)
∈
(
0
,
2
π
)
∣
Z
n
m
(
ρ
,
θ
)
∣
≤
1
\pmb{其中} \begin{cases} \rho=\sqrt{x^2+y^2} \;\in (0,\quad 1)\\ \theta=arctan(\frac{y}{x}) \in (0,\quad 2\pi)\\ |Z^{m}_n(\rho,\theta)| \le 1 \end{cases}
其中其中其中⎩⎪⎨⎪⎧ρ=x2+y2∈(0,1)θ=arctan(xy)∈(0,2π)∣Znm(ρ,θ)∣≤1
- 标准化系数
N n m = { 2 ( 1 + n ) 1 + σ ⇒ N n m ( π ) 2 ( 1 + n ) π ( 1 + σ ) ⇒ N n m ( 1 ) a n d σ = { 1 , m = 0 0 , m ≠ 0 N_n^m= \begin{cases}\sqrt{\frac{2(1+n)}{1+\sigma}}\Rightarrow N_n^m(\pi)\\ \sqrt{\frac{2(1+n)}{\pi(1+\sigma)}}\Rightarrow N_n^m(1) \end{cases} \quad \pmb{and}\quad \sigma= \begin{cases}1,&m = 0\\ 0,&m\not=0 \end{cases} Nnm=⎩⎨⎧1+σ2(1+n)⇒Nnm(π)π(1+σ)2(1+n)⇒Nnm(1)andandandσ={1,0,m=0m=0
- 径向表达式
R
n
m
(
ρ
)
=
∑
k
=
0
n
−
m
2
(
−
1
)
k
(
n
−
k
)
!
k
!
(
n
+
m
2
−
k
)
!
(
n
−
m
2
−
k
)
!
ρ
n
−
2
k
o
r
R
n
m
(
ρ
)
=
∑
k
=
0
n
−
m
2
(
−
1
)
k
(
n
−
k
k
)
(
n
−
2
k
n
−
m
2
−
k
)
ρ
n
−
2
k
R_n^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}{\frac{(-1)^k(n-k)!}{k!(\frac{n+m}{2}-k)!(\frac{n-m}{2}-k)!}}\rho^{n-2k}\\ \pmb{or}\\ R_n^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}(-1)^k \binom{n-k}{k} \binom{n-2k}{\tfrac{n-m}{2}-k} \rho^{n-2k}
Rnm(ρ)=k=0∑2n−mk!(2n+m−k)!(2n−m−k)!(−1)k(n−k)!ρn−2korororRnm(ρ)=k=0∑2n−m(−1)k(kn−k)(2n−m−kn−2k)ρn−2k
其
中
k
=
n
(
n
+
1
)
2
+
∣
m
∣
+
{
0
,
m
>
0
∧
n
≡
{
0
,
1
}
(
m
o
d
4
)
0
,
m
<
0
∧
n
≡
{
2
,
3
}
(
m
o
d
4
)
1
,
m
≥
0
∧
n
≡
{
2
,
3
}
(
m
o
d
4
)
1
,
m
≤
0
∧
n
≡
{
0
,
1
}
(
m
o
d
4
)
\pmb{其中}\;k={\frac {n(n+1)}{2}}+|m|+\left\{{\begin{array}{ll}0,&m>0\land n\equiv \{0,1\}{\pmod {4}}\\0,&m<0\land n\equiv \{2,3\}{\pmod {4}}\\1,&m\geq 0\land n\equiv \{2,3\}{\pmod {4}}\\1,&m\leq 0\land n\equiv \{0,1\}{\pmod {4}}\end{array}}\right.\\\\
其中其中其中k=2n(n+1)+∣m∣+⎩⎪⎪⎨⎪⎪⎧0,0,1,1,m>0∧n≡{0,1}(mod4)m<0∧n≡{2,3}(mod4)m≥0∧n≡{2,3}(mod4)m≤0∧n≡{0,1}(mod4)
- 弧度表达式
Θ m ( θ ) = { cos ( ∣ m ∣ θ ) m ≥ 0 sin ( ∣ m ∣ θ ) m < 0 \Theta_m(\theta)= \begin{cases} \cos(|m|\theta) &m\geq 0\\ \sin(|m|\theta) &m<0 \end{cases} Θm(θ)={cos(∣m∣θ)sin(∣m∣θ)m≥0m<0
- 多项式积分与方差
N n m ( π ) ⇒ { ∫ 0 2 π ∫ 0 1 Z n m ( ρ , θ ) 2 ⋅ ρ d ρ d θ = π V a r ( Z n m ( ρ , θ ) ) unit circle = 1 N_n^m(\pi)\Rightarrow \begin{cases} \int_{0}^{2\pi }\int_{0}^{1}Z_n^m(\rho,\theta)^{2}\cdot \rho \,d\rho \,d\theta =\pi\\ {Var} (Z_n^m(\rho,\theta))_{\text{unit circle}}=1 \end{cases} Nnm(π)⇒{∫02π∫01Znm(ρ,θ)2⋅ρdρdθ=πVar(Znm(ρ,θ))unit circle=1
应用
光学像差
带像差的点扩散函数
h ( u , v ; ξ , η ) = 1 λ 2 z i 2 ⋅ ∬ − ∞ + ∞ P ( x , y ) ⋅ e j 2 π φ k ( x , y ) λ ⋅ e − j 2 π λ z i [ ( u − M ξ ) x + ( v − M η ) y ] d x d y h(u,v;\xi,\eta)=\frac{1}{\lambda^2z^2_i}\cdot\iint^{+\infty}_{-\infty}P(x,y)\cdot e^{\frac{j2\pi\varphi^k(x,y)}{\lambda}}\cdot e^{-j\frac{2\pi}{\lambda z_i}[(u-M\xi)x+(v-M\eta)y]}\,dxdy h(u,v;ξ,η)=λ2zi21⋅∬−∞+∞P(x,y)⋅eλj2πφk(x,y)⋅e−jλzi2π[(u−Mξ)x+(v−Mη)y]dxdy
- 响应 h h h 是从光瞳汇聚到理想像点 ( u = M ξ , v = M η ) (u=M\xi,v=M\eta) (u=Mξ,v=Mη) 球面波产生, z i z_i zi 是出瞳到像面的距离, λ \lambda λ 是光的波长, P P P 是光瞳函数是对于出瞳坐标系 ( x , y ) (x,y) (x,y) 孔径内为 1 1 1 外为 0 0 0
图像特征
一般将图像的几何矩作为特征,将 2 、 3 2、3 2、3 阶的几何矩归一化,并施加旋转不变性的要求,得到 Hu 矩
- Hu 矩是局部拟合,容易受到噪声影响
按泰勒多项式正交化为勒让德多项式的思路,将几何矩正交化为 Zernike 多项式,即 Zernike 矩
- Zernike 多项式是正交完备基,其主要分量集中在前几项,可以用于当作特征,任何单位圆内的图片可以靠无穷多的 Zernike 多项式表示
- Zernike 多项式前几项集中了图像的一些特征信息,类似傅里叶变换的频谱承载频率信息,工程上通常取前几项就描述特征
提取图像的 Zernike 特征,可以实现目标识别、重建等任务