深度学习
文章平均质量分 91
huahuazhu
这个作者很懒,什么都没留下…
展开
-
深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解
因为工作原因,项目中经常遇到目标检测的任务,因此对目标检测算法会经常使用和关注,比如Yolov3、Yolov4算法、Yolov5算法、Yolox算法。当然,实际项目中很多的第一步,也都是先进行目标检测任务,比如人脸识别、多目标追踪、REID、客流统计等项目。因此目标检测是计算机视觉项目中非常重要的一部分。从2018年Yolov3年提出的两年后,在原作者声名放弃更新Yolo算法后,俄罗斯的Alexey大神扛起了Yolov4的大旗,然后不久又出现了Yolov5。而到了2021年,就在大家质疑Yolo转载 2021-08-16 13:22:07 · 2130 阅读 · 0 评论 -
卷积神经网络(CNN)反向传播算法推导
在之前的文章中我介绍了多层感知机反向传播的数学推导,主要是用数学公式来进行表示的,在全连接神经网络中,它们并不复杂,即使是纯数学公式也比较好理解。而卷积神经网络相对比较复杂,在本篇文章中我们将从直观感受和数学公式两方面来介绍CNN反向传播算法的推导。南柯一梦宁沉沦:神经网络中反向传播算法数学推导83 赞同 · 10 评论文章首先我给大家介绍一下我分析delta误差反向传播过程的简单方法,如果神经网络l+1层某个结点的delta误差要传到l层,我们就去找前向传播时l+1层的这个结点和第l层的哪转载 2021-08-04 13:57:50 · 1294 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记(3)-- 神经网络基础之Python与向量化
本笔记参考了黄海广博士和红色石头的笔记内容。本课程对应的作业,本人已翻译,放在github上,地址如下:https://github.com/fuhuaxu/deeplearning-ai-assignment/tree/master/lesson1上节课我们主要介绍了逻辑回归,以输出概率的形式来处理二分类问题。我们介绍了逻辑回归的Cost function表达式,并使用梯度下降...原创 2019-05-06 10:11:07 · 447 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记(4)-- 浅层神经网络
本课程对应的作业,本人已翻译,放在github上,地址如下:https://github.com/fuhuaxu/deeplearning-ai-assignment/tree/master/lesson1上节课我们主要介绍了向量化、矩阵计算的方法和python编程的相关技巧。并以逻辑回归为例,将其算法流程包括梯度下降转换为向量化的形式,从而大大提高了程序运算速度。本节课我们将从浅层...原创 2019-05-06 10:31:58 · 655 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记(5)-- 深层神经网络
本笔记主要参考了红色石头的笔记,在此表示感谢。本课程对应的作业,本人已翻译,放在github上,地址如下:https://github.com/fuhuaxu/deeplearning-ai-assignment/tree/master/lesson1上节课我们主要介绍了浅层神经网络。首先介绍神经网络的基本结构,包括输入层,隐藏层和输出层。然后以简单的2 layer NN为例,详...原创 2019-05-06 10:46:11 · 741 阅读 · 0 评论 -
DenseNet:Densely Connected Convolutional Networks [CVPR 2017] [比ResNet更优的CNN模型]
论文:https://arxiv.org/abs/1608.06993源码:https://github.com/liuzhuang13/DenseNetDenseNet-CVPR-Slides:https://download.csdn.net/download/julialove102123/10461620前言在计算机视觉领域,卷积神经网络(CNN)已经成为最主流的方法,...转载 2019-05-22 13:46:33 · 550 阅读 · 0 评论 -
一文简单理解推荐系统
本文主要介绍什么是推荐系统,为什么需要推荐系统,如何实现推荐系统的方案,包括实现推荐系统的一些常见模型,希望给读者提供学习实践参考。1 推荐系统概述为什么需要推荐系统信息爆炸对于信息消费者,需要从大量信息中找到自己感兴趣的信息,而在信息过载时代,用户难以从大量信息中获取自己感兴趣、或者对自己有价值的信息。 对于信息生产者,信息生产者,需要让自己生产的信息脱颖而出,受到广大...转载 2019-07-01 16:59:47 · 982 阅读 · 0 评论 -
推荐系统架构
推荐系统介绍当下,个性化推荐成了互联网产品的标配。但是,人们对推荐该如何来做,也就是推荐技术本身,还不甚了解。为此,好学的你肯定在收藏着朋友圈里流传的相关文章,转发着微博上的相关讨论话题,甚至还会不断奔走在各种大小行业会议之间,听着大厂职工们讲那些干货。我知道,这样碎片化的吸收,增加了知识的同时,也增加了焦虑。因为技术的不平等广泛存在于业界内,推荐系统也不例外。推荐系统从搜索引擎借鉴了不少技术...转载 2019-07-02 14:06:57 · 436 阅读 · 0 评论 -
python中yield的用法详解——最简单,最清晰的解释(转)
首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受。接下来是正题:首先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它首先是个return,普通的retur...转载 2019-06-28 10:25:43 · 192 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记(2)-- 神经网络基础之逻辑回归
本笔记参考了黄海广博士和红色石头的笔记。本课程对应的作业,本人已翻译,放在github上,地址如下:https://github.com/fuhuaxu/deeplearning-ai-assignment/tree/master/lesson1上节课我们主要对深度学习(Deep Learning)的概念做了简要的概述。我们先从房价预测的例子出发,建立了标准的神经网络(Neura...原创 2019-05-05 21:54:56 · 983 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记(1)-- 深度学习概述
本课程笔记参考了黄海广博士和红色石头的笔记,加入了自己的理解。本课程对应的作业,本人已翻译,放在github上,地址如下:https://github.com/fuhuaxu/deeplearning-ai-assignment/tree/master/lesson11. What is a neural network?简单来说,深度学习(Deep Learning)就是更复杂的...原创 2019-05-05 21:34:47 · 705 阅读 · 0 评论 -
win10(NVIDIA MX150) 安装tensorflow-gpu及keras
折腾了一天多TensorFlow-GPU的坑,安装了两次cuda。本篇基于NVIDIA GeForce MX150 安装 CUDA,cuDNN,Python(anaconda)TensorFlow-GPU(Windows10操作系统)安装顺序: 查看配置环境 —> CUDA Toolkit —> cuDNN —> Visual Studio 2015 Communi...原创 2019-04-13 14:32:32 · 4030 阅读 · 2 评论 -
TensorFlow学习---基础概念和程序的形式
转载博客:http://blog.csdn.net/phdat101/article/details/523506111.概念graph:图,表示具体的计算任务session:会话,图需要在会话中执行,一个会话可以包含很多图tensor:张量,在此表示数据,类型是numpy::ndarrayvariable:就是本意变量,图的重要组成转载 2017-06-21 16:14:16 · 370 阅读 · 0 评论 -
TensorFlow学习---tf.nn.conv2d实现卷积操作
tf.nn.conv2d是TensorFlow里面实现卷积的函数。tf.nn.conv2d(input, filter, strides,padding, use_cudnn_on_gpu=None, name=None)除去name参数用以指定该操作的name,与方法有关的一共五个参数:第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch,in_h原创 2017-06-21 15:09:15 · 3464 阅读 · 0 评论 -
卷积神经网络学习--激活函数
这篇学习笔记主要参考和综合了两个帖子的内容,详见参考文档,感谢两位大神。 1 什么是激活函数?激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键。目前知道的激活函数有如下几个:sigmoid,tanh,ReLu,softmax。 simoid函数也称S曲线:f(x)=1转载 2017-07-03 13:26:43 · 11781 阅读 · 2 评论 -
TensorFlow学习---tf.nn.dropout防止过拟合
一、 Dropout原理简述:tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层。Dropout就是在不同的训练过程中随机扔掉一部分神经元。也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了。示意图如下原创 2017-06-23 16:15:17 · 64999 阅读 · 13 评论 -
TensorFlow学习--tf.session.run()
函数参数run( fetches, feed_dict=None, options=None, run_metadata=None)tf.Session.run() 执行 fetches中的操作,计算 fetches 中的张量值。这个函数执行一步 TensorFlow 运算,通过运行必要的图块来执行每一个操作,并且计算每一个 fetches 中的张量的值,用相原创 2017-07-27 11:48:27 · 36223 阅读 · 3 评论 -
TensorFlow学习--入门之基本使用
原文地址http://www.cnblogs.com/flyu6/p/5555161.html整体介绍使用 TensorFlow, 你必须明白 TensorFlow:使用图 (graph) 来表示计算任务.在被称之为 会话 (Session) 的上下文 (context) 中执行图.使用 tensor 表示数据.通过 变量 (Variable) 维护状态.使转载 2017-07-27 15:34:46 · 416 阅读 · 0 评论 -
Tensorflow学习---tf.nn.embedding_lookup
tf.nn.embedding_lookup(params,ids, partition_strategy=’mod’, name=None, validate_indices=True,max_norm=None)根据ids中的id,寻找params中的对应元素,可以理解为索引,所以ids中元素值不能超出params的第一维的维数值。比如,ids=[1,3,5],则找出params中下标原创 2017-08-14 14:56:55 · 684 阅读 · 0 评论 -
EAST文本检测与Keras实现
1. 引言之前介绍了文本检测中的CTPN方法,详情可参见《CTPN文本检测与tensorflow实现》,虽然该方法在水平文本的检测方面效果比较好,但是对于竖直文本或者倾斜的文本,该方法的检测就很差,因此,在该方法之后,很多学者也提出了各种改进方法,其中,有一篇比较经典的就是旷世科技在2017年提出来的EAST模型,论文的全称为《EAST: An Efficient and Accurat...转载 2019-03-27 14:13:16 · 2796 阅读 · 2 评论 -
Linux下安装tensorflow
安装前提:已经安装了anaconda3。1、利用Anaconda创建一个python3.6的环境,环境名称为tensorflow ,输入下面命令:conda create –n tensorflow python=3.6。如下图所示,已经创建成功。2、启动tensorflow环境,使用命令:source activate tensorflow3、使用pip installt原创 2017-06-29 13:31:03 · 453 阅读 · 0 评论