推荐算法之FFM:原理及实现简介

推荐系统一般可以分成两个模块,检索和排序。比如对于电影推荐,检索模块会针对用户生成一个推荐电影列表,而排序模块则负责对这个电影列表根据用户的兴趣做排序。当把FFM算法应用到推荐系统中时,具体地是应用在排序模块。

FFM算法,全称是Field-aware Factorization Machines,是FM(Factorization Machines)的改进版。这个改进原理上比较简单,所以我想先把FM讲清楚。

我们知道推荐算法中,最广为人知的是协同过滤算法,协同过滤一般分为基于用户的协同过滤和基于物品的协同过滤,而除此之外,还有基于隐语义的协同过滤。我们来考虑一个电影评分的问题,用户对于电影的评分,可以构成一个评分矩阵 M ,这个矩阵是稀疏的,因为每个用户看过的电影都是有限的,这个矩阵里面会有很多缺失项,我们要做的便是将这个稀疏矩阵填满,我们可以怎么做呢?想象一个兴趣空间,这个空间里面有多个维度,维度一表示悬疑类型,维度二表示言情类型,等等。那么用户的兴趣可以表达为这个空间里的一个向量 u ,而电影本身的特点也可以用这个空间里的向量 v 表达,于是用户对电影的评分可以用内积 uv 来表示。通过这个方式,我们便可以对这个评分矩阵做矩阵分解:

M=UTV

其中 U 是用户在隐语义空间对应的向量组成的矩阵,而 V 则是电影对应的矩阵。求解这个矩阵分解问题对应的优化问题是这样:
minU,Vru,vR(ru,vuv)2

其中R是用户对电影的评分的集合, ru.v 即表示用户 u 对电影 v 的评分。这里为了方便省略了正则项。通过求解这个优化问题,得到矩阵 U V ,于是对于 ru,vR
  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
CTR(Click-Through Rate)指的是用户点击广告的概率,是评估广告效果的重要指标之一。CTR预估模型旨在根据用户的历史行为、广告资源及用户特征等多种因素,预测用户点击某一广告的概率,从而提高广告点击率。 Python是一种编程语言,在机器学习和深度学习领域有着广泛的应用。要实现CTR预估模型,可以使用Python中的机器学习库,比如scikit-learn或tensorflow。下面简单介绍一个基于scikit-learn的CTR预估模型的实现。 1. 数据准备 CTR预估模型需要大量的样本数据,包括用户历史行为、广告资源及用户特征等多种因素。这些数据应该经过预处理和特征工程,确保数据质量和模型性能。在数据准备过程中,需要将数据集分为训练集、验证集和测试集,来评估模型的训练情况和泛化性能。 2. 特征选择和工程 在CTR预估模型中,特征选择和工程是非常重要的环节。特征选择要考虑特定业务场景下特征的重要性和贡献,常用的方法包括Pearson相关系数、Chi-square等。特征工程则是通过一系列的数据处理和特征提取方法,将原始数据转化为有用信息的过程,如分箱、交叉特征、归一化等。 3. 模型选择和训练 在CTR预估模型中,常见的模型有LR、GBDT、FM、FFM等。在具体业务场景中,需要根据数据特点和模型性能选择最合适的模型。在模型训练过程中,需要设置超参数、损失函数、优化器等参数,并根据训练数据迭代更新模型参数,以达到最小化损失函数的目的。 4. 模型评估和优化 在CTR预估模型中,常见的评估指标有AUC、LogLoss、准确率等。在验证集和测试集上,通过评估指标来评估模型的性能,发现模型的不足之处,进一步优化模型。 总之,Python是一种优秀的编程语言,在CTR预估模型的实现中具有广泛的应用前景。但要注意数据准备、特征工程、模型训练和评估等环节,从而提高CTR预估模型的效果和性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值