- 博客(6)
- 收藏
- 关注
原创 卡尔曼滤波文字解释
每个系统都有研究对象的属性(速度、位移等等),而这些一般可以通过两种方式进行获取,一个是传感器、一个是理论模型,这是就是确定是相信那个权重更大的问题了,二者之间的关系是什么呢,传感器是实时的测出来的,理论模型是你所认为的(按照这个模型可以进行推断下一次的状态,也就是预测值),加权原因是二者都有不确定因素的影响(一般这种干扰当作是一种噪声),初始测量固然有误差,但此时偏差真实值并不会太离谱(那要这些测量仪器还有什么用),因此可以作为理论模型辅助的工具,亦或者说理论模型毕竟是理想的,需要有个实际参考才知道自己建
2023-10-20 12:12:11 67 1
原创 PNN原文详解
文章也列举其他在满足决策条件下,实现渐近贝叶斯最优的激活函数,感兴趣可以去原文看,当然原文也说明了,网络中常见元素的取值,这里就不赘述了(主要是数学性比较强,感兴趣可以深究)每个求和单元是一种训练模式,该单元求的和是归属该模式范畴/类别对应的模式层单元,也就意味着模式层单元是各个模式下的类别或范畴,从上图第二层到第三层箭头指向也能看出来。核心部分来了,虽然说网上有很多相关介绍,但你发没发现都是来回抄来抄去,第一个人不对,其他人也不对,恶性循环,导致读者白白花时间看,最终还是没懂。模式和类别具体差别是什么?
2023-10-13 21:31:35 111 1
原创 LSTM原文中Appendix中公式说明
的项拿出来进行对其求导,这里也一样只有在包含的时候才求导不为零,因此这里的克罗内克函数就是这么用的,这里因为无论是输入门的网络单元、输出门的网络单元亦或是Memory cell都有可能存在l单元或m单元中的一个,所以上式就变成了那样。其余的肯定是跟这个权重无关,故这里引入了一个克罗内克函数,这里小伙伴们肯定仍然不解,这里我以公式中的一项来解释,对于。而言,只有在l单元和m单元这两个单元而言,对其求导是不为零的,相信读到这你可能已经懂了一大半了。对于后续公式都是在此基础上的,如有不对欢迎指正。
2023-10-06 09:19:49 88 1
原创 ubuntu的hadoop配置详细过程
下的文件配置,这个文件夹下面的配置文件,网上可谓是五花八门,相信你们一定遇到很多困扰——我试过其中一个提交文件的时候出错,又试了另外一个,于是恶性循环就出现了,一直报错。此时,一定要清理磁盘,hdfs节点需要的磁盘空间挺大的,否则等后续运行wordcount的时候,一定会卡在running,查看文档他会说节点因空间不够而不健康。至于ssh密钥、jdk配置、hadoop配置网上的大体都是正确的,自行上网搜索,这里给出。用安装好的jps,查看是否所有node都在运行,运行成功是,下面的都有。
2023-09-07 16:58:54 204
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人