每天五分钟机器学习:用两种方法求出正则化的线性回归模型最优解

本文介绍了如何使用梯度下降法和正规方程求解正则化的线性回归模型最优解。在梯度下降中,正则化通过将参数乘以一个小于1的系数来防止过拟合;而在正规方程中,通过求解特定矩阵得到全局最小值的参数。
摘要由CSDN通过智能技术生成

文本重点

针对于线性回归算法求解最优解,我们学习了两种算法:一种是梯度下降算法,另外一种是正规方程。本节课程我们还是使用这两种算法来求解带有正则化项的线性回归最优解。

梯度下降法处理正则化的线性回归

如下所示是正则化线性回归的代价函数,我们要使用梯度下降算法来对其进行最小化操作

 

正则化并没有对参数θ0进行正则化,所以此时的梯度下降的计算公式分为两种情况:一种情况是θ0,另外一种情况是其它的参数θ

 

我们来对上面的θj这个更新的式子进行一下变换:

 </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值