本文重点
前面的课程中我们学习了很多的评估指标,通过这些评估指标我们可以判定模型的好和坏,但是每种指标都有其局限性,有的评价指标适用于分类算法,而有的评价指标适用于回归算法,不同的评价指标评价的角度也不同,所以很多时候对于模型的评价可能通过多个评价指标进行评价。
我们需要知道什么?
诸多的评价指标中,大部分的评价指标都只能片面的表达模型的效果。我们必须合理的运用评价指标,这样就可以对模型进行正确的评价。
所以我们需要知道以下两点:
1、每种评价指标究竟在评价什么?
2、当这种评价指标低的时候,表示模型存在什么问题
分类任务评估指标的局限性
1. 准确率(Accuracy)
定义:准确率是分类正确的样本占总样本个数的比例。
局限性:
类别不均衡问题:当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确性的主要原因。例如,在二分类问题中,如