每天5分钟机器学习:线性判别分析LDA算法

本文介绍了线性判别分析(LDA)的基本原理,对比了LDA与PCA的区别,并阐述了LDA如何在考虑类别信息的基础上进行有效的降维,以增强不同类别之间的区分度和同一类别内的数据点紧密性。
摘要由CSDN通过智能技术生成

本文重点

我们前面学习了PCA算法,本文我们将学习一种新的算法,这种算法和PCA非常相似,这个算法叫做线性判别分析,简称为LDA,也称为Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法,在1996年由Belhumeur引入模式识别和人工智能领域。

LDA原理

LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。

 

如图所示,我们可以看到有两个类别的数据,然后我们使用LDA算法,将所有的样本点映射到过原点的投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了。因为红色的点表示一个类别,而蓝色的点表示一个类别。所以LDA很明显的将红色的点和蓝色的点分开了。

LDA和PCA的区别

LDA与前面介绍过的PCA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值