1076 K尾相等数

### 分析
我们需要找到两个自然数 \( M \) 和 \( N \) 使得 \( K^M \) 和 \( K^N \) 的末尾三位数相等,并且 \( M \) 和 \( N \) 的和最小。为了实现这一点,我们可以使用快速幂算法来计算 \( K^M \mod 1000 \) 和 \( K^N \mod 1000 \),并记录每个结果的最小指数。当我们找到两个相同的结果时,我们就可以计算 \( M + N \) 并输出最小的和。

### 伪代码
1. 读取输入的自然数 \( K \)。
2. 初始化一个数组 `tail` 用于记录每个结果的最小指数。
3. 使用快速幂算法计算 \( K^i \mod 1000 \)。
4. 如果结果在 `tail` 数组中已经存在,则输出当前指数和记录的最小指数的和。
5. 如果结果不在 `tail` 数组中,则记录当前指数。
6. 重复步骤3-5直到找到两个相同的结果。

### C++代码
 

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;

int quick(int a, int b, int c) {
    int ans = 1;
    a = a % c;
    while (b) {
        if (b & 1) ans = (ans * a) % c;
        b >>= 1;
        a = (a * a) % c;
    }
    return ans;
}

int main() {
    int k, tail[1000] = {0}, start = 0;
    scanf("%d", &k);
    for (int i = 1; i < 1000; i *= k)
        ++start;
    for (int i = start;; ++i) {
        int ans = quick(k, i, 1000);
        if (!tail[ans])
            tail[ans] = i;
        else {
            printf("%d\n", i + tail[ans]);
            break;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值