[NOIP2001 提高组] 数的划分
题目描述
将整数 n n n 分成 k k k 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如: n = 7 n=7 n=7, k = 3 k=3 k=3,下面三种分法被认为是相同的。
1
,
1
,
5
1,1,5
1,1,5;
1
,
5
,
1
1,5,1
1,5,1;
5
,
1
,
1
5,1,1
5,1,1.
问有多少种不同的分法。
输入格式
n , k n,k n,k ( 6 < n ≤ 200 6<n \le 200 6<n≤200, 2 ≤ k ≤ 6 2 \le k \le 6 2≤k≤6)
输出格式
1 1 1 个整数,即不同的分法。
样例 #1
样例输入 #1
7 3
样例输出 #1
4
提示
四种分法为:
1
,
1
,
5
1,1,5
1,1,5;
1
,
2
,
4
1,2,4
1,2,4;
1
,
3
,
3
1,3,3
1,3,3;
2
,
2
,
3
2,2,3
2,2,3.
【题目来源】
NOIP 2001 提高组第二题
思考:
跟自然数的拆分几乎一模一样
新加一个参数表示当前用了几个数字即可。
#include<bits/stdc++.h>
using namespace std;
int a[11];
int n,m,Ans = 0;
void Dfs(int s,int la,int Num){
if (Num == 0 && s == 0) {Ans++;return;}
else if (s == 0 || Num == 0) return;
for (int i = la; i <= s; i++) Dfs(s-i,i,Num-1);
}
int main(){
scanf("%d %d",&n,&m);
Dfs(n,1,m);
printf("%d",Ans);
}