智能交通
皇德华叫兽
专注于人工智能,智能交通,智慧城市!
展开
-
基于图神经网络的归纳矩阵补全
Inductive Matrix Completion Based on Graph Neural Networks参考文献Inductive Matrix Completion Based on Graph Neural Networks - ICLR 2020〇、相关工作1、Graph Neural Network图神经网络(GNNs)是一种用于在图形上学习的新型神经网络。主要分为两种类型:Node Level GNNs和Graph Level GNNs。Nodelevel GN.原创 2020-10-30 22:15:12 · 2641 阅读 · 2 评论 -
【2020顶会www】STGRAT 用于交通预测的时空图注意网络
概述由于道路类型不同、速度突变和道路之间的空间依赖关系,预测道路交通速度是一项具有挑战性的任务,需要对长时间输入序列中动态变化的道路之间的空间依赖关系和时间模式进行建模。提出了一种新的时空图注意(STGRAT)方法,有效地捕捉了道路网络中的时空动态。该方法的特点主要包括空间注意、时间注意和空间哨点向量。空间注意力获取图形结构信息(如道路之间的距离),根据道路状态动态调整空间相关性。时间注意力负责捕获交通速度变化,而哨点向量允许模型从空间相关的节点检索新的特征或保留现有的特征。实验结果表明,STGR...原创 2020-09-12 22:18:36 · 1192 阅读 · 1 评论 -
【2020顶会KDD】一种基于邻域的异构图推荐交互模型
题目:An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph文章作者信息:预览摘要:由于异构信息网络(HIN)能够表征复杂的图形,并且包含丰富的语义。近年来,HIN被广泛应用于推荐系统中。然而,现有的方法虽然提高了性能,但在实际应用中仍存在以下问题:一方面,大多数现有的基于HIN的方法依赖于显式路径可达性来利用用户和项目之间基于路径的语义关联,例如基..原创 2020-09-12 14:15:18 · 1086 阅读 · 0 评论 -
【2020顶会www】基于时空图神经网络的交通流预测
概述交通流分析、预测和管理是新时期建设智慧城市的关键。借助深层神经网络和大交通数据,我们可以更好地了解隐藏在复杂交通网络中的潜在模式。一条道路交通流的动态不仅在时间维度上依赖于序列模式,在空间维度上也依赖于其他道路。虽然已有预测未来交通流的研究工作,但大多数研究在建模空间和时间依赖性方面存在一定的局限性。本文提出了一种新的交通流预测空间时态图神经网络,它能全面地捕捉空间和时态模式。特别是,该框架提供了一个可学习的位置注意机制,以有效地聚集来自邻近道路的信息。同时,为交通流动态建模提供了时序组件,利...原创 2020-09-11 17:18:46 · 2618 阅读 · 3 评论 -
【2020顶会KDD】AutoST:面向时空预测的高效神经网络学习模型
题目:AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction文章作者信息:预览摘要:时空(ST)预测(如人群流预测)在城市规划、智能交通和公共安全等一系列智慧城市应用中具有重要意义。近年来,人们提出了许多深度神经网络模型来进行准确的预测。然而,手动设计神经网络需要花费大量的精力和时空领域的专业知识。如何自动建立一个通用的神经网络来处理城市中的各种时空预测任务?在本文中,作者研究了时..原创 2020-09-11 11:42:55 · 2334 阅读 · 1 评论 -
【2020顶会IJCAI】利用图卷积网络进行长短期流量预测
概述:交通预测是一个经典的时空预测问题,具有许多实际应用,如智能路线规划、动态交通管理和基于位置的智能应用。由于交通数据的高度非线性和复杂性,近年来深度学习方法引起了人们的极大兴趣。然而,很少有方法能同时满足长期和短期的预测任务。针对现有研究的不足,在这篇论文中,我们提出了一个新的深度学习框架称为长期短期图卷积网络(LSGCN)处理两种流量预测任务。在这个框架中,我们提出了一个新的图注意网络cosAtt,并将cosAtt和图卷积网络(GCN)集成到一个空间门控块中。通过空间门控块和门控线性单元...原创 2020-09-08 19:16:15 · 1354 阅读 · 1 评论 -
【2020顶会KDD】用于属性图嵌入的自适应图形编码器
题目:Adaptive Graph Encoder for Attributed Graph Embedding文章作者信息:预览摘要:属性图嵌入是一项具有挑战性的图分析任务,它从图的拓扑结构和节点特征中学习向量表示。近年来,基于图卷积网络(GCNs)的方法在这方面取得了很大的进展。然而,现有的基于GCN的方法主要有以下三个缺点:首先,实验表明,图卷积中的滤波器和权值矩阵的纠缠会影响模型的性能和鲁棒性;其次,这些方法中的图卷积滤波器是广义拉普拉斯平滑滤波器的特殊情况,..原创 2020-09-08 19:15:23 · 818 阅读 · 0 评论 -
【2020顶会AAAI】时空同步图卷积网络: 一种时空网络数据预测的新框架
概述时空网络数据预测在交通管理和城市规划的大量应用中具有重要意义。然而,潜在的复杂时空相关性和异质性使这个问题具有挑战性。现有的方法通常使用单独的分量来获取时空相关性,而忽略了时空数据的异质性。在本文中,我们提出了一个新的模型,名为时空 同步图形卷积网络(STSGCN),用于时空网络数据预测。通过精心设计的时空同步建模机制,该模型能够有效地捕捉复杂的局域时空相关性。同时,在模型中设计了多个不同时间段的模块,以有效地捕获局部时空图中的异质性。在四个真实数据集上进行了广泛的实验,证明了我们的方法达到了最先进原创 2020-09-08 19:14:21 · 1076 阅读 · 0 评论 -
交通级联模式推断
Inferring Traffic Cascading Patterns作者信息 Yuxuan Liang,Zhongyuan Jiang,Yu Zheng1 摘要在现实生活中,我们只能观察到离散的时间间隔内不同路段上的个别交通状况,而不是路段之间的显示交互或者传播(如:A-->B)。本文首先对交通传播中存在的三重影响进行建模,然后提出了一个数据驱动的方法,此方法通过最大化交通观测数据的可能性来发现级联模式。公式显示有些问题,可以看我的原文https://zhuanlan.zhihu.原创 2020-09-03 16:49:38 · 505 阅读 · 0 评论 -
强化学习在智能交通灯中的应用
IntelliLight: a Reinforcement Learning Approach for Intelligent Traffic Light Controlintroduction这篇文章是来自KDD 2018的IntelliLight,这篇文章是宾州州立大学黎珍辉老师团队做的,这个团队最近几年在交通领域尤其是交通灯控制方面做了很多研究。Zhenhui Li传统的交通灯控制主要有这两类:定时信号控制和车辆驱动的控制方法。最近的研究尝试将强化学习应用于交通灯控制问题。原创 2020-08-18 18:15:30 · 3894 阅读 · 0 评论 -
IJCAI2019 长时段交通预测解决方案
Graph WaveNet for Deep Spatial-Temporal Graph Modeling一 作者介绍 本文的作者是悉尼科技大学的Zonghan Wu博士,师从IEEE member Shirui Pan,作者还发表了一篇GNN的综述[《A Comprehensive Survey on Graph Neural Networks》](https://arxiv.org/pdf/1901.00596v2.pdf),引用量达到600多。这里是作者团队的主页:原创 2020-08-16 18:37:56 · 3321 阅读 · 0 评论