自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 pytorch学习(九)——shuffleNet网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 网络结构 提出了channel shuffle的思想,并且shuffleNet Unit 中全是GCov和DWCov 上图中(a)是串行结构,GConv虽然能够减少参数的运算量,但GConv中不同组之间的信息没有交流 (b)使用channel shuffle将不同组的信息交叉 在之前的残差网络中,网络中大部分的计算量都被1×11\times 11×1的卷积占据,所以这里将卷积全部换成group卷积 Sh

2021-06-03 16:03:49 993

原创 pytorch学习(八)—— 目标检测前言

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节教学视频链接: 视频 目标检测 One-stage SSD YOLO 主要步骤 基于anchors直接进行分类以及调整边界框 优点: 检测速度快 Two-Stage: Faster-RCNN 主要步骤 通过专门的模块生成候选框(RPN),寻找前景以及调整边界框(基于anchors) 基于之前生成的后选矿进行进一步分类以及调整边界框(基于proposals) 优点 检测更准确 ...

2021-06-01 10:32:01 179

原创 pytorch学习(七)——查看中间特征层及卷积核参数

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 查看中间特征层 在书写 网络的类的过程中,于forward函数中增加记录层参数的数组: def forward(self, x): outputs = [] for name, module in self.features.named_children(): x = module(x) if name in ["0", "3", "6

2021-06-01 10:19:19 5633

原创 pytorch学习(六)—— MobileNet网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 数据集下载,提取码:dw2d MobileNet V1网络结构 在移动设备中运行深度学习 轻量级CNN网络,牺牲少量准确率来大大减少模型参数与运算量 提出了Depthwise Convolution+Pointwise Convolution 大大减少运算量(理论上普通卷积计算量是DW+PW的8到9倍) DW卷积(Depthwish Cov) 卷积核的深度为1 输入特征矩阵channel=卷积核的个数=

2021-05-31 18:40:46 621

原创 pytorch学习(五)—— ResNet网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 数据集下载,提取码:dw2d 网络解析 超深的网络结构 提出Residual模块 使用Batch Normalization 加速训练(丢弃dropout) 网络结构 上述黑色箭头表示残差结构 虚线与实线相比会额外附加一个卷积层 残差结构 左侧适用于较少层数,右侧适用于较多层数 弧线与加号表示,网络的输出结果与输入相加得到最终的结果 主路输出的结果的宽和高要与输入的矩阵的宽和高相同 右侧1×11\t

2021-05-30 16:24:13 849 1

原创 pytorch学习(四)——GoogLeNet网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 数据集下载,提取码:dw2d 网络结构 1.提出inception 结构 初始版本 先前层得到的特征矩阵同时输入到3个卷积层和一个池化层中进行处理 然后按照深度进行拼接,得到输出特征矩阵,其中四个框得到的结果其宽和高必须相同 进阶版本 与初级版本相比,进阶版除了1×11\times11×1的卷积层外,其他三个都与一个1×11\times 11×1的卷积核进行串联,这三个1×11 \times

2021-05-27 11:27:20 240

原创 pytorch学习(三)——VGG网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 数据集下载,提取码:dw2d VGG网络特性 通过堆叠多个3×33\times 33×3的卷积核来代替大尺度卷积核(减少所需参数) 程序结构 model.py train.py {predict.py] ...

2021-05-26 16:17:58 243

原创 pytorch学习(二)——AlexNet网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 视频 数据集下载,提取码:dw2d 数据集下载及解压 按照上述下载地址下载数据集,并按照视频中的方法及脚本文件对数据集进行处理 model.py import torch.nn as nn import torch class AlexNet(nn.Module): def __init__(self, num_classes=1000, init_weights=False): super

2021-05-25 20:10:39 359

原创 pytorch学习(一)——LeNet网络搭建

本篇博客是学习B站霹雳吧啦Wz教学视频的总结 本节所用到的程序和教学视频链接: 程序 教学视频 程序结构 模型搭建 训练,train 预测,predict 1 模型搭建: import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): #初始化函数,网络层结构 def __init__(self): super(LeNet, s

2021-05-25 14:20:53 440

原创 傅里叶单像素成像

傅里叶单像素成像 文章目录傅里叶单像素成像数学原理**通过单像素探测器获取二维图像的傅里叶谱**程序**Single-pixel imaging by means of Fourier spectrum acquisition****具体步骤** 张子邦, 陆天傲, 彭军政,等.傅里叶单像素成像技术与应用[J]. 红外与激光工程, 2019, 48(6).、 数学原理 通过获取图像的傅里叶谱来重建图像本身。图像的傅里叶谱通过对目标物体投影一些列不同的傅里叶基地图案,并通过单像素探测器测量所得的光强值来获

2021-05-25 14:19:35 7162 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除