
Numpy
文章平均质量分 51
虚坏叔叔
「虚幻私塾」
展开
-
Pandas plot 出图
这次我们讲如何将数据可视化. 首先import我们需要用到的模块,除了 pandas,我们也需要使用 numpy 生成一些数据,这节里使用的 matplotlib 仅仅是用来 show 图片的, 即 plt.show()。import pandas as pdimport numpy as npimport matplotlib.pyplot as plt今天我们主要是学习如何 plot data创建一个Series这是一个线性的数据,我们随机生成1000个数据,Series 默认的 inde原创 2021-01-22 07:07:52 · 799 阅读 · 0 评论 -
Pandas 合并 merge
转载请注明:虚幻私塾 » Pandas 合并 merge要点pandas中的merge和concat类似,但主要是用于两组有key column的数据,统一索引的数据. 通常也被用在Database的处理当中.依据一组key合并import pandas as pd#定义资料集并打印出left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2',原创 2021-01-22 06:00:13 · 483 阅读 · 0 评论 -
Pandas 合并 concat
要点pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式.axis (合并方向)axis=0是预设值,因此未设定任何参数时,函数默认axis=0。import pandas as pdimport numpy as np#定义资料集df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])df2 = pd.DataFr原创 2021-01-17 23:11:54 · 506 阅读 · 0 评论 -
Pandas 导入导出
转载请注明:虚幻私塾 » Pandas 导入导出要点pandas可以读取与存取的资料格式有很多种,像csv、excel、json、html与pickle等…, 详细请看官方说明文件读取csv示范档案下载 - student.csvimport pandas as pd #加载模块#读取csvdata = pd.read_csv('student.csv')#打印出dataprint(data)将资料存取成pickledata.to_pickle('student.pickle')原创 2021-01-17 19:03:26 · 353 阅读 · 1 评论 -
Pandas 处理丢失数据
转载请注明:虚幻私塾 » Pandas 处理丢失数据创建含 NaN 的矩阵有时候我们导入或处理数据, 会产生一些空的或者是 NaN 数据,如何删除或者是填补这些 NaN 数据就是我们今天所要提到的内容.建立了一个6X4的矩阵数据并且把两个位置置为空.dates = pd.date_range('20130101', periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','原创 2021-01-17 09:48:00 · 311 阅读 · 0 评论 -
Pandas DataFrame设置值
转载请注明:虚幻私塾 » pandas 设置值创建数据我们可以根据自己的需求, 用 pandas 进行更改数据里面的值, 或者加上一些空的,或者有数值的列.首先建立了一个 6X4 的矩阵数据。dates = pd.date_range('20130101', periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])""" A B原创 2021-01-17 08:27:12 · 447 阅读 · 0 评论 -
Pandas 选择数据
转载请注明:虚幻私塾 » Pandas 选择数据我们建立了一个 6X4 的矩阵数据。dates = pd.date_range('20130101', periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])""" A B C D2013-01-01 0 1 2 32013-01-02 4 5原创 2021-01-17 05:50:09 · 270 阅读 · 0 评论 -
Pandas 基本介绍
转载请注明:虚幻私塾 » Pandas 基本介绍Numpy 和 Pandas 有什么不同如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。要使用pandas,首先需要了解他主要两个数据结构:Series和DataFrame。Seriesimport pandas as pdimport numpy as nps = pd.Series([1,原创 2021-01-17 04:59:50 · 353 阅读 · 0 评论 -
numpy的 copy & deep copy 浅拷贝和深拷贝
= 的赋值方式会带有关联性首先 import numpy 并建立变量, 给变量赋值。import numpy as npa = np.arange(4)# array([0, 1, 2, 3])b = ac = ad = b改变a的第一个值,b、c、d的第一个值也会同时改变。a[0] = 11print(a)# array([11, 1, 2, 3])确认b、c、d是否与a相同。b is a # Truec is a # Trued is a # True原创 2021-01-17 04:40:11 · 1228 阅读 · 0 评论 -
Numpy的矩阵array分割
转载请注明:虚幻私塾 » Numpy的矩阵array分割创建数据首先 import 模块import numpy as np建立3行4列的ArrayA = np.arange(12).reshape((3, 4))print(A)"""array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])"""纵向分割print(np.split(A, 2, axis=1))"""[array([[0, 1],原创 2021-01-16 20:16:54 · 1604 阅读 · 1 评论 -
Numpy的矩阵array合并
转载请注明:虚幻私塾 » Numpy的矩阵array合并np.vstack()对于一个array的合并,我们可以想到按行、按列等多种方式进行合并。首先先看一个例子:import numpy as npA = np.array([1,1,1])B = np.array([2,2,2]) print(np.vstack((A,B))) # vertical stack"""[[1,1,1] [2,2,2]]"""vertical stack本身属于一种上下合并,即原创 2021-01-16 18:38:40 · 1994 阅读 · 0 评论 -
Numpy 索引
转载请注明:虚幻私塾 » Numpy 索引一维索引我们都知道,在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy中也有相对应的表示方法:import numpy as npA = np.arange(3,15)# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) print(A[3]) # 6让我们将矩阵转换为二维的,此时进行同样的操作:A = np.arange(3,15).resha原创 2021-01-16 10:34:23 · 280 阅读 · 1 评论 -
numpy矩阵的运算2
转载请注明:虚幻私塾 » numpy矩阵的运算2学习资料:Numpy官方英文教材通过上一节的学习,我们可以了解到一部分矩阵中元素的计算和查找操作。然而在日常使用中,对应元素的索引也是非常重要的。依然,让我们先从一个脚本开始:import numpy as npA = np.arange(2,14).reshape((3,4)) # array([[ 2, 3, 4, 5]# [ 6, 7, 8, 9]# [10,11,12,13]]) p原创 2021-01-16 09:27:43 · 323 阅读 · 0 评论 -
numpy矩阵的运算1
转载请注明:虚幻私塾 » numpy矩阵的运算让我们从一个脚本开始了解相应的计算以及表示形式 :import numpy as npa=np.array([10,20,30,40]) # array([10, 20, 30, 40])b=np.arange(4) # array([0, 1, 2, 3])numpy 的几种基本运算上述代码中的 a 和 b 是两个属性为 array 也就是矩阵的变量,而且二者都是1行4列的矩阵, 其中b矩阵中的元素分别是从0到3。原创 2021-01-16 05:32:40 · 457 阅读 · 0 评论 -
Numpy矩阵数列array的创建
1.创建数组a = np.array([2,23,4]) # list 1dprint(a)# [2 23 4]2.指定数值类型 dtypea = np.array([2,23,4],dtype=np.int)print(a.dtype)# int 64a = np.array([2,23,4],dtype=np.int32)print(a.dtype)# int32a = np.array([2,23,4],dtype=np.float)print(a.dtype)# f原创 2021-01-15 05:52:34 · 1860 阅读 · 0 评论 -
Numpy 矩阵的属性
这次我们会介绍几种 numpy 的属性:ndim:维度shape:行数和列数size:元素个数使用numpy首先要导入模块import numpy as np #为了方便使用numpy 采用np简写列表转化为矩阵:array = np.array([[1,2,3],[2,3,4]]) #列表转化为矩阵 print(array) #结果就是""" array([[1, 2, 3], [2, 3, 4]]) """numpy 的几种属性接着我们看看这几种属性的结果:print('n原创 2021-01-14 06:11:23 · 411 阅读 · 0 评论 -
Windows下vscode中通过pip安装numpy和pandas
使用vscode安装非常简单。安装numpypip install numpy输入这行代码不会报错就安装成功了import numpy as nparray = np.array([[1,2,3], [2,3,4]])print(array)安装pandaspip install pandas输入这行代码不会报错就安装成功了import pandas as pd...原创 2021-01-13 06:58:52 · 43689 阅读 · 2 评论 -
numpy & pandas 是什么,有什么用?
1.科学运算中最为重要的2个模块numpypandas如果你要用Python进行数据分析,这2个模块非常重要。任何关于数据分析的用途,都少不了这2个模块。pandas是基于numpy写的,它是numpy的升级版本。2.它们的具体用处是什么?如果我们用tenserflow或者machine learning或者是一些神经网络都会应用到数据分析。如果运用到数据分析,使用numpy & pandas模块会让数据分析计算的非常快。比python自带的字典或者列表都要快很多。因为它们是基原创 2021-01-13 06:09:57 · 2038 阅读 · 1 评论