caffe编译报错blob size exceeds INT_MAX

Check failed: shape[i] <= 2147483647 / count_ (3000 vs. 2485) blob size exceeds INT_MAX

       这段时间在准备找实习,回顾深度学习调参经验的时候,突然想起以前工作站跑过的一个模型:基于faster-rcnn的人脸检测的模型,这是自己入坑时训练的第一个模型,从做数据到顺利跑完也花了两三天的时间,还是比较有意义的,也算是第一次亲眼见证了深度学习方法的效果之好。

        但是在重新跑这个模型的时候,居然报了很多错。也难怪,那台工作站的环境重装过好多遍,再加上rbg大神写py-faster-rcnn的时候还是几年以前,代码有些部分只适合以前老版本的caffe。下面就把自己遇到的错误记录一下吧。

1、cudnn版本问题(这个错误的解决办法直接可以百度出来)

./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:  
./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值