- 博客(112)
- 资源 (20)
- 收藏
- 关注
原创 mask rcnn使用指南
做姿态估计的小伙伴们肯定经常用检测器,为了方便大家,这里给出一个很方便的教程让大家快速上手,不用再纠结配置环境!欢迎加入我们的姿态估计群:970029323(0)配置环境①下载数据集下载coco数据集(2014或者2017随便你),比如这里我们保存到/home/user/datasets/coco然后解压,把图片解压到/home/user/datasets...
2019-03-07 15:58:22 3419
原创 torch系列:如何在torch内使用tensorboard
torch也是可以使用tensorboard的,通过安装crayon就可以下面以ubuntu下的安装为例进行讲解其实安装的过程还是会碰到不少曲折的过程的主要为①安装crayon会提示找不到libssl.so文件,因此可以加入OPENSSL_LIBDIR=/usr/lib/x86_64-linux-gnu/来告诉luarocks,ssl库文件的路径。②docker下载镜像的时候会使用国外的地址,因此...
2018-03-26 21:36:47 1750
原创 PyOpenPose编译与使用
PyOpenPose编译前言PyOpenPose依赖于OpenCV3以上的版本,依赖于python2.7这个版本OpenCV3的版本 其实opencv3的其他版本我也试过,2.4的会出问题,3.3的也会出问题,问了作者之后才知道他装的是3.2的,所以这里建议安装3.2的版本。 并且OpenCV3不要开启dnn,编译OpenCV3的时候一定要关闭dnn,否则会出现caffe.proto相关的错误
2017-08-17 09:53:18 28833 12
原创 caffe系列:deeplab中的插值网络层前传和反传的实现分析
本文介绍了deeplab的语义分割当中经常使用的插值网络层的前传和反传代码的实现,并且介绍了其实现的原理,给出了代码注释以及对应的实现,希望能够帮助到用到语义分割的人。
2017-07-04 15:13:30 5580
原创 tensorflow系列:如何使用inception resnet v2网络
本文介绍了如何安装最新的slim库(一种tensorflow中的轻量级的库),从而使用最新的网络架构inception resnet v2。通过使用fine tune来完成自己的任务。
2017-06-23 15:29:07 17077 2
原创 xgboost系列:windows和linux下xgboost安装指南
本文介绍了window和linux 下xgboost的安装及其使用,特别是在windows下,传统的方法是进行编译,本文直接使用已经编译好的dll动态链接库进行安装,省时省力。此外还介绍了linux下的xgboost的安装。为想用xgboost的童鞋节省时间:)
2017-06-10 21:48:51 25009 6
原创 torch系列:torch中的nn.Sequential,nn.Concat/ConcatTable,nn.Parallel/PararelTable之间区别
本文以一张图区分了torch中的nn.Sequential,nn.Concat/ConcatTable,nn.Parallel/PararelTable之间区别
2017-03-03 13:53:28 10263 3
原创 caffe代码阅读:网络层是如何被初始化,网络是怎么进行前传和反传的
本文从源码角度解析了网络是如何被初始化的,从一开始的solver的注册与实例化,到利用solver去初始化网络中的每一层,然后进行前传和反传。希望借此文能够让读者理清楚caffe的整体运行流程,窥一斑而见全豹。
2017-03-03 13:44:50 3781 2
原创 关于softmax损失函数的推导
关于softmax损失函数的推导某人问我softamx损失函数的推导,索性就写一下. 定义softmax损失函数的输入为XN×CX_{N \times C}和YN×CY_{N \times C}, 其中N代表输入的数据的个数,C代表类别的个数.X指的是神经网络的输出,Y代表的是0-1矩阵,即如果第i个样本的类别为j那么yij=1y_{ij}=1, 那么第i行的其余列的值就都为0. 这里的sof
2017-02-23 13:17:48 6820
原创 torch系列:关于luajit中string.format的支持
本文介绍在使用torch过程中配置eclipse对torch进行调试支持的时候,若使用luajit所出现的一个关于luajit对于string.format部分支持的分析,并且提出了一个临时解决方法。
2017-01-10 15:21:34 1750
原创 写作套路:如何写论文摘要
如何撰写科研论文是一个很重要的问题,特别是在面对一张白纸如何下手,本文介绍了通过对比分析各个论文的摘要部分,详细阐述撰写科研论文的摘要部分有哪些套路,应该如何使用现有的论文资源,利用他们的语言组织结构去组织自己的论文的摘要
2016-10-03 17:19:31 5708
原创 Caffe实战系列:最简洁的Caffe安装教程(以ubuntu14.04为例)
本文介绍了使用包管理工具安装显卡驱动以及cuda sdk以及caffe的依赖项,最后介绍了caffe的编译过程。介绍简洁命了名了,便于小白学习。
2016-09-15 15:44:56 15096
原创 论文阅读: ECCV2016 Chained Predictions Using Convolutional Neural Networks
论文阅读: ECCV2016 Chained Predictions Using Convolutional Neural Networks作者:Georgia Gkioxari, Alexander Toshev Navdeep Jaitly 本文介绍了一种通过预测每一步所走的长度来逐步解决人的姿态估计问题问题解决的思路很新颖,但是实际的实现却很dirty。。。
2016-09-13 21:31:39 3843 7
原创 Caffe实战系列:实现自己Caffe网络层
本文通过自己实现一个简单的caffe的层来阐述如何实现自己的网络层,同时介绍caffe的运行机理。为深度学习打下坚实的基础。
2016-09-13 21:00:01 8010 9
原创 Caffe代码阅读11:absval_layer层的实现
这一层比较简单:主要就是求绝对值,反传部分的代码也很简单里头用到了caffe_abs这个函数以及caffe_cpu_sign这两个函数需要注意的是caffe_cpu_sign在math_functions.hpp里头定义得比较特别在math_functions.hpp里只有caffe_sign,通过一个宏定义生成了caffe_cpu_sign这个函数整体来说没啥特别的内容,直接上代
2016-08-17 10:22:18 5340
原创 论文阅读:Structured Feature Learning for Pose Estimation
王晓刚组的论文CVPR2016一、论文所解决的问题本文要解决的是在CNN中如何对关节之间的依赖进行建模,主要是引入几何变换核(单单用几何变换核,是不行的,因为会受到关节之间的距离限制,所以后面提出了双向树模型),这个核是用在卷积层的。此外还提出了双向的树结构模型(还是传统的基于图模型的玩法,将关节的树模型集成进了CNN,所谓的树模型就是把人的关节看成是一个树状的模型),这样每个关节的fea
2016-07-06 22:35:55 7079 1
原创 论文阅读:End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for H
human pose estimation DPMEnd-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human pose estimation
2016-07-06 22:26:16 3481
原创 论文阅读:Personalizing Human Video Pose Estimation
CVPR2016 Personalizing Human Video Pose Estimation个性化的人的姿态估计问题,小样本的姿态估计
2016-07-06 22:18:35 4043
原创 Caffe解惑:为什么Caffe里头有mutable_cpu_data和cpu_data
一开始看代码的时候会纳闷,为啥caffe里头又一个cpu_data还要有一个mutable_cpu_data二话不说翻出源代码看看究竟有啥区别:const void* SyncedMemory::cpu_data() { to_cpu(); return (const void*)cpu_ptr_;}void* Syn
2016-07-06 22:05:28 16005 3
原创 论文阅读:Look-ahead before you leap: end-to-end active
本文的脑洞开的比较大,介绍了一种使用RNN来进行场景识别的方法,通过使用强化学习的方法来控制摄像头的移动,通过RNN来对场景图像序列进行识别得到场景的类别。
2016-05-12 18:59:56 2268
原创 论文阅读:Poselet-Based Contextual Rescoring for Human Pose Estimation
本文介绍了基于Poselets的关节提取方法,该方法将Pictorial Structure方法和Poselets的方法进行融合,从而更好地提取关节的位置。
2016-05-12 18:53:52 3551
原创 论文阅读:Pose Machines: Articulated Pose Estimation via Inference Machines
本文介绍了Convolution Poase Machine所follow的论文Pose Machine,这篇论文声称能够解决关节遮挡问题。此外论文解决的方式也很新颖通过多类分类器的级联实现关节的逐步精确
2016-05-12 18:44:50 5949 3
原创 论文阅读:A Critical Review of Recurrent Neural Networks for Sequence Learning
回复式神经网络的发展以及应用,首先介绍了最简单的前馈神经网络,然后介绍回复式神经网络的发展历史,接着给出了回复式神经网络的训练方法,最后给出现代回复式神经网络的架构和种类以及应用。
2016-04-23 10:44:41 11572
原创 Caffe解惑:Caffe中是如何控制loss的
caffe是使用loss_weight控制loss的传递在基本类Layer里的函数如下对于loss Layer loss_weight非0,对于非loss Layer,loss_weight都是0所以Layer对网络loss的贡献值也为0
2016-04-18 19:29:10 9428
原创 论文阅读:End-To-End Memory Networks
作者:Sainbayar Sukhbaatar Arthur Szlam Jason Weston Rob FergusNew York University Facebook AI Research New YorkFollow 的论文:MEMORY NETWORKS, Jason Weston, Sumit Chopra & Antoine Bordes Facebo
2016-04-18 19:17:02 11564 2
原创 论文阅读:Memory Networks
一、论文所解决的问题实现长期记忆(大量的记忆),并且实现如何从长期记忆中读取和写入,此外还加入了推理功能为什么长期记忆很重要:因为传统的RNN连复制任务都不行,LSTM估计也够玄乎。在QA问题中,长期记忆是很重要的,充当知识库的作用,从其中获取长期记忆来回答问题上面这个问题就是,当遇到有若干个句子并且句子之间有联系的时候,RNN和LSTM就不能很好地解决,以为是长期依赖,需要从
2016-04-18 19:11:05 10849 1
原创 Caffe实战系列:如何将CRFAsRNN移植到caffe-windows上去
(1)移植辅助的文件将include/caffe/util/下的coords.hpp和modified_permutohedral.hpp复制到caffe-windows对应的目录将src/caffe/util/modified_permutohedral.cpp复制到对应的目录中去(2)移植Layer中的特性在include/caffe/layer.h
2016-04-17 18:10:48 6363 11
原创 caffe代码阅读10:Caffe中卷积的实现细节(涉及到BaseConvolutionLayer、ConvolutionLayer、im2col等)-2016.4.3
本文介绍了Caffe中的卷积层的实现,以及卷积实现的时候所使用的im2col的实现,其中重点介绍了im2col的实现原理。
2016-04-03 13:05:59 18392 1
原创 caffe 实战系列:proto文件格式以及含义解析:如何定义网络,如何设置网络参数(以AlexNet为例) 2016.3.30
caffe 层的定义以及参数的设置
2016-03-30 11:52:34 7955
原创 caffe代码阅读9:SyncedMemory的实现细节-2016.3.28
该类SyncedMemory主要就是在内存分配空间以及在GPU上分配空间,并且负责同步数据,此外我看mutable_cpu_data和cpu_data 这两个函数的主要区别就是head_是否改变,至于这两个函数的命名上的mutable是有着互斥的含义的。究竟体现在哪儿,我的感受是,这里的mutable的体现主要是在调用了mutable_cpu_data之后强制设置了head_为HEAD_AT_CPU,从而保护了cpu上的数据.
2016-03-28 21:09:43 5740 8
原创 caffe代码阅读8: Data_layers的实现细节(各个数据读取层的实现细节) 2016.3.25-28
Caffe中Layer类是所有神经网络层的基类,BaseDataLayer继承自该类,BasePrefetchingDataLayer继承自BaseDataLayer,DataLayer继承自BasePrefetchingDataLayer。有了上述几个基础的类之后,其他的类都是从这几个类进行派生。比如DummyDataLayer,HDF5Layer和HDF5OutputLayer都是直接继承自Layer。MemoryDataLayer则是继承自BaseDataLayer凡是涉及到直接读取数据文
2016-03-28 17:38:35 14246 3
原创 Caffe解惑:caffe中的前传和反传是如何确定的?
有人一直对Caffe does all the bookkeeping for any DAG of layers to ensure correctness of the forward and backward passes。这句话有疑惑。我给出解释:首先给出caffe确定前传和反传的整体流程:首先根据参数文件的字符串到层的注册表中获取层的Creator函数,然后创
2016-03-24 20:37:57 3834
Caffe实战系列:实现自己Caffe网络层
2016-09-13
CrfAsRnn-caffe-windows移植
2016-04-17
Caffe中卷积的实现代码注释
2016-04-03
Data_layers的实现细节代码注释
2016-03-28
Deep Spatial Net的数据读取层代码注释
2016-03-24
postgresql9.2 jdbc驱动
2013-12-29
cvMatchShapes例子
2013-01-18
SetWindowOrgEx和SetViewPortOrgEx的区别示例详解
2012-04-09
vc++漂亮的启动和退出界面源码
2010-04-04
NT下读MBR.rar
2010-04-04
MFC类库详解.chm
2010-04-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人