布布汪
码龄6年
  • 36,186
    被访问
  • 12
    原创
  • 1,664,532
    排名
  • 25
    粉丝
关注
提问 私信
  • 毕业院校: 四川大学
  • 加入CSDN时间: 2016-06-27
博客简介:

布布汪的博客

查看详细资料
  • 1
    领奖
    总分 90 当月 6
个人成就
  • 获得42次点赞
  • 内容获得56次评论
  • 获得134次收藏
创作历程
  • 2篇
    2021年
  • 10篇
    2020年
成就勋章
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvtensorflowpytorchscikit-learn聚类迁移学习分类回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

牛客论坛项目:置顶、加精、删除

增加了取消置顶,取消加精,其它部分和老师视频讲的一样,下面是需要修改的部分。discuss-detail.html省略…<div class="float-right"> <input type="hidden" id="postId" th:value="${post.id}"> <button type="button" class="btn btn-danger btn-sm" id="topBtn" sec:authorize="hasAnyAuthor
原创
发布博客 2021.07.06 ·
178 阅读 ·
0 点赞 ·
0 评论

牛客论坛项目使用新版ElasticSearch

测试类@Test public void testSearchByTemplate() { NativeSearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery(QueryBuilders.multiMatchQuery("互联网寒冬", "title", "content")) .withSort(SortBuilders.fieldSor
原创
发布博客 2021.07.05 ·
203 阅读 ·
0 点赞 ·
1 评论

对路径“C:\Program Files (x86)\gwssi\CPC客户端\CheckWord.xml”的访问被拒绝。

升级CPC客户端时,遇到对路径“C:\Program Files (x86)\gwssi\CPC客户端\CheckWord.xml”的访问被拒绝。以管理员身份运行OffLineUpdate.exe可解决。
原创
发布博客 2020.11.03 ·
8717 阅读 ·
6 点赞 ·
0 评论

matlab + visio + Adobe Acrobat DC导出高dpi图像,最高可到2400dpi,用于论文贴图

步骤;1、首先用matlab导出一张.emf格式的矢量图。导出步骤可参考:matlab导出超高分辨率图像,用于论文贴图2、将导出的emf图片复制粘贴到visio中:3、点击文件->另存为pdf:4、用 Adobe Acrobat DC打开pdf若没安装Adobe Acrobat DC点击:链接:https://pan.baidu.com/s/1-a-sFHwaeoeiXWBqnvx1SA提取码:3obo5、搜索工具里面搜索裁剪,裁剪页面到合适大小:裁剪完成后会显示边框
原创
发布博客 2020.07.16 ·
744 阅读 ·
2 点赞 ·
1 评论

matlab导出超高分辨率图像,用于论文贴图

步骤1、首先用matlab生成一张图片,例如:2、点击右上角文件-- 导出设置–选择渲染:根据自己需求选择对应分辨率,再点击导出:3、可选择导出文件类型,清晰度为 .emf>.tif>.bmp>.png,一般情况下png已经够用了。如果要选择完全无失真并且放大很多倍都很清晰的话可选择矢量图格式.emf。下面是矢量图.emf放大与普通.bmp局部放大效果对比.emf图片.bmp图片可以看到,在word里放大到最大时,bmp图片虽然也比较清楚,不过相比emf图片还是略
原创
发布博客 2020.07.08 ·
2231 阅读 ·
2 点赞 ·
1 评论

labview实现hough变换.vi

发布资源 2020.07.05 ·
vi

labview实现hough变换检测直线

由于找了很久都没找到用labview实现hough变换检测直线的程序,labview vision模块自带的hough变换使用起来太麻烦又不能满足要求,无奈自己手写了一个。程序总体来说就是:首先遍历二值化图像每一个值为255的点:    对于每个点,对应到参数p—theta平面是一条曲线,且theta范围为-90~90度,那么就依次遍历整条曲线(由于参数空间H是一个行为r,列为theta(也就是r行、180列)的数组,所以每条曲线只需遍历180个位置即可):        依据r = xcos(t
原创
发布博客 2020.07.05 ·
624 阅读 ·
1 点赞 ·
0 评论

Labview上部署tensorflow训练好的模型(可部署tensorflow2.x版本),Labview深度学习

1、训练、保存tensorflow模型首先在tensorflow2.x上训练模型,并冻结为.pb格式,方便labview调用。步骤可参见我另一篇冻结模型的文章:链接2、labview上调用(IMAQ DL Model VI)(注:前提是labview已经安装视觉开发模块)我用的是labview2018 64位版本,视觉模块附上链接,2018版的64位与32位通用。链接:https://pan.baidu.com/s/1FM7IG-DNYtMKzw6do2ME4w提取码:r9a7调用附
原创
发布博客 2020.06.21 ·
2989 阅读 ·
5 点赞 ·
9 评论

TensorFlow2.x冻结模型,保存为.pb格式方便部署

1、用tf.keras创建模型inputs = tf.keras.Input(shape=(1000, 9,), name='input')input = tf.keras.layers.Flatten(name="flatten")(inputs)f1 = tf.keras.layers.Dense(512, activation='relu', name='dense_1')(input)d1 = tf.keras.layers.Dropout(0.2,name='dropout_1')(f1)
原创
发布博客 2020.06.21 ·
5923 阅读 ·
10 点赞 ·
18 评论

英伟达NVIDIA驱动安装失败

英伟达NVIDIA驱动安装失败,英伟达NVIDIA图形驱动安装失败。之前我在官网下载安装和驱动精灵安装都失败了,我后来用驱动人生安装成功,可以试试使用驱动人生安装。(注:此外可以考虑安装低版本的驱动)...
原创
发布博客 2020.06.15 ·
1336 阅读 ·
0 点赞 ·
0 评论

tensorflow-gpu版本运行出错:failed to create cublas handle: CUBLAS_STATUS_INTERNAL_ERROR

2020-06-15 20:50:15.674461: E tensorflow/stream_executor/cuda/cuda_blas.cc:238] failed to create cublas handle: CUBLAS_STATUS_INTERNAL_ERROR2020-06-15 20:50:15.675589: E tensorflow/stream_executor/cuda/cuda_blas.cc:238] failed to create cublas handle: CUB
原创
发布博客 2020.06.15 ·
4521 阅读 ·
1 点赞 ·
4 评论

tensorflow-gpu版本使用时报错,各种dll文件找不到

2020-06-15 20:30:54.310396: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library ‘cublas64_10.dll’; dlerror: cublas64_10.dll not found2020-06-15 20:30:54.311457: W tensorflow/stream_executor/platform/default/dso_l
原创
发布博客 2020.06.15 ·
6568 阅读 ·
14 点赞 ·
18 评论

使用anaconda安装直接安装tensorflow2.1.0-gpu版本

使用anaconda安装直接安装tensorflow2.1.0-gpu版本下载好anaconda查看自己显卡cudn点击系统信息,选择组件查看打开anaconda安装tensorflow-gpu版本点击apply安装tensorflow-gpu,这时会看到该tensorflow-gpu版本对应cuda型号,不能超出自己电脑显卡cudn,若超出,就需降低tensorflow-gpu版本再次点击apply,直到对应。此方法不用再额外下载cuda 与cudnn,直接anaconda自动会
原创
发布博客 2020.06.15 ·
1490 阅读 ·
1 点赞 ·
4 评论