TensorFlow2.x冻结模型,保存为.pb格式方便部署

本文介绍了如何使用TensorFlow2.x创建并训练模型,然后将模型保存为.h5格式,接着通过定义转化函数将模型冻结为.pb格式,以实现跨平台部署,并且这种方式不受TensorFlow版本限制。
摘要由CSDN通过智能技术生成

1、用tf.keras创建模型

inputs = tf.keras.Input(shape=(1000, 9,), name='input')
input = tf.keras.layers.Flatten(name="flatten")(inputs)
f1 = tf.keras.layers.Dense(512, activation='relu', name='dense_1')(input)
d1 = tf.keras.layers.Dropout(0.2,name='dropout_1')(f1)
f2 = tf.keras.layers.Dense(128, activation='relu', name='dense_2')(d1)
outputs = tf.keras.layers.Dense(3, activation='softmax', name='output')(f2)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name='intrusion')
model.summary()

2、模型训练

model.compile(loss='sparse_categorical_crossentropy',
              optimizer=tf.keras.optimizers.Adam(),
              metrics=['sparse_categorical_accuracy'])
history = model.fit(x_train, y_train,
            
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值